Sustainable circular economy design in 2050 for water and food security using renewable energy

2022 ◽  
pp. 509-521
Author(s):  
Seeme Mallick
2009 ◽  
Vol 16 (5) ◽  
pp. 1305-1310 ◽  
Author(s):  
Zheng-Bin ZHANG

2021 ◽  
Vol 171 ◽  
pp. 105624
Author(s):  
Lianhua Liu ◽  
Wei Ouyang ◽  
Hongbin Liu ◽  
Jianqiang Zhu ◽  
Youhua Ma ◽  
...  

2021 ◽  
Vol 139 ◽  
pp. 110695
Author(s):  
KM Nazmul Islam ◽  
Tapan Sarker ◽  
Farhad Taghizadeh-Hesary ◽  
Anashuwa Chowdhury Atri ◽  
Mohammad Shafiul Alam

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 497
Author(s):  
Filippo Marchelli ◽  
Giorgio Rovero ◽  
Massimo Curti ◽  
Elisabetta Arato ◽  
Barbara Bosio ◽  
...  

Valorising biomass waste and producing renewable energy or materials is the aim of several conversion technologies. In this work, we consider two residues from different production chains: lignocellulosic residues from agriculture and wool residues from sheep husbandry. These materials are produced in large quantities, and their disposal is often costly and challenging for farmers. For their valorisation, we focus on slow pyrolysis for the former and water hydrolysis for the latter, concisely presenting the main literature related to these two processes. Pyrolysis produces the C-rich biochar, suitable for soil amending. Hydrolysis produces a N-rich fertiliser. We demonstrate how these two processes could be fruitfully integrated, as their products can be flexibly mixed to produce fertilisers. This solution would allow the achievement of balanced and tuneable ratios between C and N and the enhancement of the mechanical properties. We propose scenarios for this combined valorisation and for its coupling with other industries. As a result, biomass waste would be returned to the field, following the principles of circular economy.


2021 ◽  
Author(s):  
Qing He ◽  
Kwok Pan Chun ◽  
Omer Yetemen ◽  
Bastien Dieppois ◽  
Liang Chen ◽  
...  

<p>Disentangling the effects of climate and land use changes on regional hydrological conditions is critical for local water and food security. The water variability over climate transition regions at the midlatitudes is sensitive to changes in regional climate and land use. Gansu, located in northwest China, is a midlatitude climate transition region with sharp climate and vegetation gradients. In this study, the effects of climate and land‑use changes on water balances are investigated over Gansu between 1981 and 2015 using a Budyko framework. Results show that there is reduced runoff generation potential over Gansu during 1981 and 2015, especially in the southern part of the region. Based on statistical scaling relationships, local runoff generation potential over Gansu are related to the El Nino-Southern Oscillation (ENSO). Intensified El Nino conditions weaken the Asian monsoons, leading to precipitation deficits over Gansu. Moreover, the regional evapotranspiration (ET) is increasing due to the warming temperature. The decreasing precipitation and increasing ET cause the decline of runoff generation potential over Gansu. Using the dynamical downscaling model outputs, the Budyko analysis indicates that increasing coverage of forests and croplands may lead to higher ET and may reduce runoff generation potential over Gansu. Moreover, the contributions of climate variability and land‑use changes vary spatially. In the southwest part of Gansu, the impacts of climate variability on water variations are larger (around 80%) than that of land‑use changes (around 20%), while land use changes are the dominant drivers of water variability in the southeast part of the region. The decline of runoff generation potential reveals a potential risk for local water and food security over Gansu. The water‑resource assessment approach developed in this study is applicable for collaborative planning at other climate transition regions at the midlatitudes with complex climate and land types for the Belt and Road Initiative.</p>


Sign in / Sign up

Export Citation Format

Share Document