slow pyrolysis
Recently Published Documents


TOTAL DOCUMENTS

449
(FIVE YEARS 183)

H-INDEX

45
(FIVE YEARS 11)

2022 ◽  
Vol 138 ◽  
pp. 298-307
Author(s):  
Anubhuti Bhatnagar ◽  
Abhishek Singhal ◽  
Henrik Tolvanen ◽  
Kati Valtonen ◽  
Tero Joronen ◽  
...  
Keyword(s):  

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Meseret Muche ◽  
Eyayu Molla ◽  
Sultan Mohammed ◽  
Esubalew Sintie ◽  
Ahmed Hassen

Application of biochar on acidic soils may improve soil fertility and crop productivity. This study aimed to explore the relevance of parthenium biochar-induced changes in the physicochemical properties and agronomic performance of the selected wheat varieties in acidic soils. A pot trial was used in determining the effect of slow pyrolysis parthenium biochar on acidic soils and the agronomic performance of wheat varieties. A general linear model (GLM) of multivariate analysis and principal component analysis (PCA) was used to compare functional variation among soil assayed parameters with biochar dosages and years. Biochar-treated acidic soils did not show significant differences in their physical properties. However, a significant incremental trend was observed in the soil moisture content. The biochar-amended acidic soils showed noticeable differences in the soil pH, available phosphorous, and exchangeable bases (Ca, K, and Na) compared to the control. In all soil samples, a decreasing trend in the soil micronutrients was observed with an increase in the biochar amounts. The analysis also unveiled significant changes in root length, root and shoot dry biomass, and plant height of wheat varieties in response to the biochar amendments. The application of 19.5 t/ha and 23 t/ha dosages of biochar gave the maximum changes in the agronomic performance of Kekeba and Ogolcha varieties, while the minimum was obtained in the 26.5 t/ha and the control. Furthermore, PCA axis 1 accounted for 74.34% of the total variance within a higher eigenvector value (10.4076), and most of the soil parameters were positively correlated with CEC (0.29), available phosphorous (0.29), and soil pH (0.28); however, the micronutrients were negatively correlated. In conclusion, Parthenium hysterophorus biochar has the potential to amend acidic soils, and thus, the application of 16.0, 19.5, and 23 t·ha−1 biochar dosages are considered suitable to reduce the soil acidity level and improve the agronomic performance of wheat varieties. However, extensive research will be needed to determine the effects of biochar on soil properties and crop production in field conditions.


2022 ◽  
Vol 252 ◽  
pp. 115076
Author(s):  
Rodrigo Torres-Sciancalepore ◽  
Anabel Fernandez ◽  
Daniela Asensio ◽  
Mathias Riveros ◽  
María Paula Fabani ◽  
...  

Author(s):  
Tahereh Jalalabadi ◽  
Behdad Moghtaderi ◽  
Jessica Allen

The effect of pressure on the thermochemical conversion of woody biomass and lignin in the presence of carbonate additives has been investigated at moderate temperatures (600 and 800°C). A ternary...


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Suzana Ioana Calcan ◽  
Oana Cristina Pârvulescu ◽  
Violeta Alexandra Ion ◽  
Cristian Eugen Răducanu ◽  
Liliana Bădulescu ◽  
...  

The paper aimed at studying the slow pyrolysis of vine pruning waste in a fixed bed reactor and characterizing the pyrolysis products. Pyrolysis experiments were conducted for 60 min, using CO2 as a carrier gas and oxidizing agent. The distribution of biochar and bio-oil was dependent on variations in heat flux (4244–5777 W/m2), CO2 superficial velocity (0.004–0.008 m/s), and mean size of vegetal material (0.007–0.011 m). Relationships among these factors and process performances in terms of yields of biochar (0.286–0.328) and bio-oil (0.260–0.350), expressed as ratio between the final mass of pyrolysis product and initial mass of vegetal material, and final value of fixed bed temperature (401.1–486.5 °C) were established using a 23 factorial design. Proximate and ultimate analyses, FT-IR and SEM analyses, measurements of bulk density (0.112 ± 0.001 g/cm3), electrical conductivity (0.55 ± 0.03 dS/m), pH (10.35 ± 0.06), and water holding capacity (58.99 ± 14.51%) were performed for biochar. Water content (33.2 ± 1.27%), density (1.027 ± 0.014 g/cm3), pH (3.34 ± 0.02), refractive index (1.3553 ± 0.0027), and iodine value (87.98 ± 4.38 g I2/100 g bio-oil) were measured for bio-oil. Moreover, chemical composition of bio-oil was evaluated using GC-MS analysis, with 27 organic compounds being identified.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 1
Author(s):  
Rami Alfattani ◽  
Mudasir Akbar Shah ◽  
Md Irfanul Haque Siddiqui ◽  
Masood Ashraf Ali ◽  
Ibrahim A. Alnaser

Bio-char has the ability to isolate carbon in soils and concurrently improve plant growth and soil quality, high energy density and also it can be used as an adsorbent for water treatment. In the current work, the characteristics of four different types of bio-chars, obtained from slow pyrolysis at 375 °C, produced from hard-, medium-, thin- and paper-shelled walnut residues have been studied. Bio-char properties such as proximate, ultimate analysis, heating values, surface area, pH values, thermal degradation behavior, morphological and crystalline nature and functional characterization using FTIR were determined. The pyrolytic behavior of bio-char is studied using thermogravimetric analysis (TGA) in an oxidizing atmosphere. SEM analysis confirmed morphological change and showed heterogeneous and rough texture structure. Crystalline nature of the bio-chars is established by X-ray powder diffraction (XRD) analysis. The maximum higher heating values (HHV), high fixed carbon content and surface area obtained for walnut shells (WS) samples are found as ~ 18.4 MJ kg−1, >80% and 58 m2/g, respectively. Improvement in HHV and decrease of O/C and H/C ratios lead the bio-char samples to fall into the category of coal and confirmed their hydrophobic, carbonized and aromatized nature. From the Fourier transform infra-red spectroscopy (FTIR), it is observed that there is alteration in functional groups with increase in temperature, and illustrated higher aromaticity. This showed that bio-chars have high potential to be used as solid fuel either for direct combustion or for thermal conversion processes in boilers, kilns and furnace. Further, from surface area and pH analysis of bio-chars, it is found that WS bio-chars have similar characteristics of adsorbents used for water purifications, retention of essential elements in soil and carbon sequestration.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8457
Author(s):  
Marco Maniscalco ◽  
Giulia Infurna ◽  
Giuseppe Caputo ◽  
Luigi Botta ◽  
Nadka Tz. Dintcheva

The zero-waste city challenge of the modern society is inevitably addressed to the development of model’s waste-to-energy. In this work, carob waste, largely used in the agro-industrial sector for sugar extraction or locust beangum (LBG) production, is considered as feedstock for the slow pyrolysis process. According to the Food and Agriculture Organization of the United Nations (FAO), in 2012, the world production of carobs was ca. 160,000 tons, mainly concentrated in the Mediterranean area (Spain, Italy, Morocco, Portugal, and Greece). To evaluate the biomass composition, at first, the carob waste was subjected to thermo-gravimetric analysis. The high content of fixed carbon suggests that carobs are a plausible candidate for pyrolysis conversion to biochar particles. The thermal degradation of the carob waste proceeds by four different steps related to the water and volatile substances’ removal, degradation of hemicellulose, lignin and cellulose degradation, and lignin decomposition. Considering this, the slow pyrolysis was carried out at three different temperatures, specifically, at 280, 340, and 400 °C, and the obtained products were characterized. Varying the processing temperature, the proportion of individual products’ changes with a reduction in the solid phase and an increase in liquid and gas phases, with an increase in the pyrolysis temperature. The obtained results suggest that carob waste can be considered a suitable feedstock for biochar production, rather than for fuels’ recovery.


Sign in / Sign up

Export Citation Format

Share Document