Induced pluripotent stem cells–derived hematopoietic progenitors for cellular immunotherapies

2022 ◽  
pp. 233-263
Author(s):  
Igor Slukvin ◽  
Saritha S. D'Souza ◽  
Akhilesh Kumar
Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1206-1206
Author(s):  
Keiki Kumano ◽  
Shunya Arai ◽  
Koki Ueda ◽  
Kumi Nakazaki ◽  
Yasuhiko Kamikubo ◽  
...  

Abstract Abstract 1206 Introduction: Induced pluripotent stem cells (iPSCs) can be generated from various cell types by the expression of defined transcription factors. In addition to the regenerative medicine, iPSCs have been used for the study of the pathogenesis of inherited genetic disease. Recently, it was reported that iPSCs were generated not only from normal tissue, but also from malignant cells. In those cases, cancer cells themselves must be the starting material from which iPSCs are derived. However, in almost all the cases, they used the established cell lines (chronic myelogenous leukemia (CML), gastrointestinal cancers, and melanoma) except for the JAK2-V617F mutation (+) polycythemia vera (PV) patient. In this study, we established the iPSCs from primary CML patient sample. Results: After obtaining informed consent, bone marrow cells from CML patient were reprogrammed by introducing the transcription factors Oct3/4, Sox2, KLF4, and c-myc. To improve the efficiency of the development of iPSCs, we added valproic acid (VPA), a histone deacetylase inhibitor, to the culture. Two CML derived iPSCs (CML-iPSCs) were generated. CML-iPSCs expressed the pluripotency markers such as SSEA-4 and Tra-1-60, and the endogenous expression of embryonic stem cell (ESC) characteristic transcripts (Oct3/4, Sox2, KLF4, Nanog, LIN28, REX1) was confirmed by RT-PCR. Oct4 and Nanog promoter regions were demetylated in the CML-iPSCs. Although CML-iPSCs expressed bcr-abl, they were resistant to the imatinib. Then we differentiated them into hematopoietic progenitors within the ‘unique sac-like structures’ (iPS-sacs). This method was reported to be able to produce the hematopoietic progenitors with higher efficiency than the usual embryoid body formation method using human ESCs (Takayama et al., Blood, 111, 5298–306, 2008). The hematopoietic progenitors showed the hematopoietic marker CD45 and immature marker CD34, and recovered the sensitivity to the imatinib, which recapitulated the feature of initial CML disease. Then we investigated the mechanism of the resistance to the imatinib in CML-iPSCs. The phosphorylation state of ERK1/2, AKT, and STAT5, which are the essential for the survival of bcr-abl (+) hematopoietic progenitors, were evaluated after imatinib treatment in CML-iPSCs. The phosphorylation of ERK1/2 and AKT, which were also essential for the maintenance of iPSCs, were unchanged after treatment, although STAT5 was not activated both before and after treatment. These results showed that the signaling for iPSCs maintenance compensated for the inhibition of bcr-abl in CML-iPSCs and that the oncogene addiction was lost in CML-iPSCs. Conclusion: We generated the iPSCs from primary CML patient samples, re-differentiated them into hematopoietic lineage and showed the recapitulation of the features of initial disease. Primary samples of hematological malignancy are usually difficult to be expanded. However, if once they are reprogrammed to iPSCs, they can expand unlimitedly. As a result, we can obtain the genetically abnormal hematopoietic cells continuously by re-differentiating them into hematopoietic cells and use them for the studies which require the large number of living cells such as the analysis for leukemia stem cells or drug screening. Thus iPSCs technology would be useful for the study of hematological malignancy, especially for which animal model was not established such as myelodysplastic syndrome and be applicable for other cancers than hematological malignancies. We are now trying to establish the iPSCs derived from other hematological malignancies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1594-1594
Author(s):  
Wenyu Yang ◽  
Feng Ma ◽  
Kenji Matsumoto ◽  
Natsumi Nishihama ◽  
Hiroshi Sagara ◽  
...  

Abstract Abstract 1594 Eosinophils are multifunctional leukocytes implicated in the pathogenesis of numerous inflammatory processes. As the major effectors, eosinophils function in a variety of biological responses, allergic diseases and helminth infections. It is generally accepted human eosinophils develop through a pathway initially sharing common feature with basophils. However, there lacks a clear chart for early development of human eosinophils, such as during embryonic or fetal stages. We recently established an efficient method for producing eosinophils from human embryonic and induced pluripotent stem cells (hESC/iPSCs). By a two-step induction, we first generated multipotential hematopoietic progenitors by co-culturing hESC/iPSCs with mouse AGM-derived stromal cells for 2 weeks. Then, total co-culture cells were transferred into suspension culture favoring eosinophil development with addition of IL-3 and other factors (SCF, IL-6, TPO, Flt-3 ligand) . The maturation of hESC/iPSC -derived eosinophils was shown in a time-dependent manner, first co-expressing eosinophil-and basophil-specific markers [eosinophil peroxidase (EPO), and 2D7, respectively], then the portion of eosinophil markers gradually increased while that of basophil markers decreased (EPO+ cells from 56.4% at day 7 to 94.4% at day 21, while 2D7+ cells from 62.8% to 25.7%, respectively), typically mimicking the development of eosinophils from human adult hematopoietic progenitors. By flowcytometric analysis, an eosinophil-specific surface marker, Siglec-8, was also expressed on these hESC/iPSC-derived eosinophils in a time-dependent manner (from 10.8% at day 7 to 91.3% at day 21), paralleling to those with EPO. The expression of eosinophil-specific granule cationic proteins (EPO, MBP, ECP, EDN) and IL-5 receptor mRNA was also detected by RT-PCR. Furthermore, transmission electron microscopy (TEM) observation confirmed the eosinophil property. Eosinophils derived from hiPSCs hold similar characteristics as those from hESCs. The function of hES/hiPSC-derived eosinophils is being under investigation. Our study provides an experimental model for exploring early genesis of eosinophils, especially in uncovering the mechanisms controlling the development of the initial innate immune system of human being in normal and diseased individuals. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. SCI-38-SCI-38
Author(s):  
Igor Slukvin

Abstract Abstract SCI-38 Induced pluripotent stem cells (iPSCs) are somatic cells that have been turned into embryonic-like stem cells by forced expression of factors critical for establishing pluripotency. Because iPSCs can be differentiated into any type of cell in the human body, including hematopoietic cells, they are seen as a logical alternative source of red blood cells (RBCs) for transfusion. In addition, the unlimited expansion potential of iPSCs makes it easy to adopt iPSC technology for RBC biomanufacturing. iPSCs can be generated from any type of donor, including O/Rh-negative universal donors and donors with very rare blood phenotypes, which makes it possible to generate blood products to accommodate virtually all patient groups. We have developed an approach for generating large quantities of RBCs from iPSCs by inducing them to differentiate into CD34+CD43+ hematopoietic progenitors in coculture with OP9 stromal cells, followed by selective expansion of erythroid cells in serum-free media with erythropoiesis-supporting cytokines. Erythroid cultures produced by this approach consist of leukocyte-free populations of CD235a+ RBCs with robust expansion potential and long (up to 90 days) life spans. In these cultures, up to 1.8×105 RBCs can be generated from a single iPSC. Similar to embryonic stem cells, iPSC-derived RBCs express predominantly embryonic and fetal hemoglobin, with very little adult hemoglobin. It is already feasible to adopt iPSC technologies for producing cGMP-grade RBCs using defined animal-product-free differentiation conditions. However, the induction of the complete switch from embryonic to fetal and adult hemoglobin, as well as the terminal maturation and enucleation of iPSC-derived erythroid cells, remains a significant challenge. We recently identified at least three distinct waves of hematopoietic progenitors with erythroid potential in iPSC differentiation cultures. The characterization of erythroid cells produced from these waves of hematopoiesis may help to define populations with definitive erythroid potential and facilitate the production of erythrocytes from iPSCs. Additional critical steps toward translating iPSC-based RBC technologies to the clinic include the development of bioreactor-based-technology for further scaling-up of cell production, and evaluation of the therapeutic potential and safety of human pluripotent stem cell-derived blood cells in animal models. Overall, the manufacturing of RBCs provides several advantages. It can improve the continuity of the blood supply, minimize/eliminate the risk of infection transmission, reduce the incidence of hemolytic and nonhemolytic transfusion reactions, and provide an opportunity to generate RBCs that fit specific clinical needs by using genetically engineered iPSCs or iPSCs with rare blood groups. Disclosures: Slukvin: CDI: Consultancy, Equity Ownership; Cynata: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


2017 ◽  
Vol 44 (3) ◽  
pp. 143-150 ◽  
Author(s):  
Katharina U. Kessel ◽  
Anika Bluemke ◽  
Hans R. Schöler ◽  
Holm Zaehres ◽  
Peter Schlenke ◽  
...  

2017 ◽  
Vol 20 ◽  
pp. 91-93 ◽  
Author(s):  
Amornrat Tangprasittipap ◽  
Bunyada Jittorntrum ◽  
Wasinee Wongkummool ◽  
Narisorn Kitiyanant ◽  
Alisa Tubsuwan

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 911-911 ◽  
Author(s):  
Stella T Chou ◽  
Daniel VanDorn ◽  
Yu Yao ◽  
Deborah L. French ◽  
Mitchell J Weiss

Abstract Abstract 911 Infants with Down syndrome (DS, trisomy 21, T21) frequently exhibit hematological abnormalities including polycythemia and/or thrombocytopenia. About 10% of DS infants develop transient myeloproliferative disease (TMD), which usually self-resolves. However, approximately 30% of affected patients develop acute megakaryoblastic leukemia (AMKL) by age 4 years. Both TMD and AMKL are accompanied by somatic GATA1 gene mutations that give rise to GATA-1s (for “short”), an amino-truncated protein lacking amino acids 1–81. Thus, DS-associated AMKL requires at least three sequentially occurring genetic abnormalities in hematopoietic cells: germline T21, somatic GATA1 mutations in fetal progenitors, and postnatal mutations in additional, currently unidentified genes. To analyze this malignant progression step by step and better understand T21-associated hematopoietic abnormalities, we created induced pluripotent stem cells (iPSCs) from DS subjects (n=3), TMD blasts (n=5) and controls (n=3). All iPSC lines exhibited signature features of pluripotency and retained their relevant genotypes: T21, T21+GATA1s and normal euploid. We compared the blood-forming capacities of iPSC lines by generating embryoid bodies in defined medium containing hematopoietic cytokines. Stage-matched embryoid bodies of each genotype produced similar numbers CD41+/235+/43+ hematopoietic progenitors capable of erythroid, myeloid and megakaryocytic differentiation. However, in methylcellulose colony assays, progenitors from DS iPSCs contained 13.5-fold increased numbers of burst forming unit erythroid (BFU-E) progenitors compared to control iPSCs (p=.009) (Table). While the absolute numbers of colony forming unit-megakaryocytes (CFU-MK) were similar between DS and wild type iPSC-derived progenitors (p=0.21), the CFU-MK:CFU-myeloid ratio was increased in progenitors from DS iPSCs (p=0.014). Thus, DS iPSC-derived hematopoietic progenitors exhibit increased propensity for erythro-megakaryocytic differentiation, similar to what occurs in DS fetal liver (Chou et al; Tunstall-Pedoe et al, Blood v112, 2008). In contrast, CD41+/235+/43+ progenitors from all 5 DS TMD iPSC lines studied (T21/GATA1s) exhibited complete absence of erythroid developmental potential in liquid culture and methylcellulose colony assays (p<.001), despite robust production of myeloid and megakaryocytic cells. We confirmed this observation by comparing the hematopoietic potential of iPSCs generated from TMD blasts (T21/GATA1s) and normal blood cells (T21/GATA1wt) of the same DS patient (n = 2 different individuals). In each case, acquisition of the GATA1s mutation selectively blocked erythropoiesis and tended to increase megakaryopoiesis. Thus, the amino terminus of GATA-1, absent in GATA-1s, is required for primitive (yolk-sac type) erythropoiesis, the developmental stage that is recapitulated in our iPSC differentiation protocols. In agreement, loss of the GATA-1 amino terminus inhibits primitive erythropoiesis in mice (Li et al, Nature Genetics v37, 2005). Our findings illustrate distinct hematopoietic defects conferred by T21 and GATA-1s, and suggest how these might synergize in TMD and AMKL. More generally, our studies illustrate how analysis of patient-derived iPSCs can be used to analyze genetic blood disorders, particularly those that arise during fetal development.Table.Average number of colonies per 5000 CD41+/235+/43+ progenitors plated in methylcellulose assays for BFU-E and CFU-GM, and Megacult assay for CFU-MK. Standard deviation in parenthesesGenotype#patients#replicatesBFU-ECFU-GMCFU-MkEuploid31031 (+26)138 (+70)468 (+135)T2138417* (+201)52* (+32)574 (+211)T21+GATA1s5140** (+0)394** (+245)754 (+657)*p<0.05, euploid vs T21,**p<0.05 T21 vs T21+GATA1s. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 34 (8) ◽  
pp. S36-S36
Author(s):  
Ping Duan ◽  
Xuelin Ren ◽  
Wenhai Yan ◽  
Xuefei Han ◽  
Xu Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document