Spatio-temporal data preprocessing technologies

2022 ◽  
pp. 25-75
Author(s):  
Jinyu Chen ◽  
Haoran Zhang ◽  
Wenjing Li ◽  
Ryosuke Shibasaki
2021 ◽  
Vol 6 (1) ◽  
pp. 63-85
Author(s):  
Haitao Yuan ◽  
Guoliang Li

AbstractIntelligent transportation (e.g., intelligent traffic light) makes our travel more convenient and efficient. With the development of mobile Internet and position technologies, it is reasonable to collect spatio-temporal data and then leverage these data to achieve the goal of intelligent transportation, and here, traffic prediction plays an important role. In this paper, we provide a comprehensive survey on traffic prediction, which is from the spatio-temporal data layer to the intelligent transportation application layer. At first, we split the whole research scope into four parts from bottom to up, where the four parts are, respectively, spatio-temporal data, preprocessing, traffic prediction and traffic application. Later, we review existing work on the four parts. First, we summarize traffic data into five types according to their difference on spatial and temporal dimensions. Second, we focus on four significant data preprocessing techniques: map-matching, data cleaning, data storage and data compression. Third, we focus on three kinds of traffic prediction problems (i.e., classification, generation and estimation/forecasting). In particular, we summarize the challenges and discuss how existing methods address these challenges. Fourth, we list five typical traffic applications. Lastly, we provide emerging research challenges and opportunities. We believe that the survey can help the partitioners to understand existing traffic prediction problems and methods, which can further encourage them to solve their intelligent transportation applications.


2019 ◽  
Vol 942 (12) ◽  
pp. 22-28
Author(s):  
A.V. Materuhin ◽  
V.V. Shakhov ◽  
O.D. Sokolova

Optimization of energy consumption in geosensor networks is a very important factor in ensuring stability, since geosensors used for environmental monitoring have limited possibilities for recharging batteries. The article is a concise presentation of the research results in the area of increasing the energy consumption efficiency for the process of collecting spatio-temporal data with wireless geosensor networks. It is shown that in the currently used configurations of geosensor networks there is a predominant direction of the transmitted traffic, which leads to the fact that through the routing nodes that are close to the sinks, a much more traffic passes than through other network nodes. Thus, an imbalance of energy consumption arises in the network, which leads to a decrease in the autonomous operation time of the entire wireless geosensor networks. It is proposed to use the possible mobility of sinks as an optimization resource. A mathematical model for the analysis of the lifetime of a wireless geosensor network using mobile sinks is proposed. The model is analyzed from the point of view of optimization energy consumption by sensors. The proposed approach allows increasing the lifetime of wireless geosensor networks by optimizing the relocation of mobile sinks.


Author(s):  
Didier A. Vega-Oliveros ◽  
Moshé Cotacallapa ◽  
Leonardo N. Ferreira ◽  
Marcos G. Quiles ◽  
Liang Zhao ◽  
...  

2021 ◽  
Vol 10 (3) ◽  
pp. 188
Author(s):  
Cyril Carré ◽  
Younes Hamdani

Over the last decade, innovative computer technologies and the multiplication of geospatial data acquisition solutions have transformed the geographic information systems (GIS) landscape and opened up new opportunities to close the gap between GIS and the dynamics of geographic phenomena. There is a demand to further develop spatio-temporal conceptual models to comprehensively represent the nature of the evolution of geographic objects. The latter involves a set of considerations like those related to managing changes and object identities, modeling possible causal relations, and integrating multiple interpretations. While conventional literature generally presents these concepts separately and rarely approaches them from a holistic perspective, they are in fact interrelated. Therefore, we believe that the semantics of modeling would be improved by considering these concepts jointly. In this work, we propose to represent these interrelationships in the form of a hierarchical pyramidal framework and to further explore this set of concepts. The objective of this framework is to provide a guideline to orient the design of future generations of GIS data models, enabling them to achieve a better representation of available spatio-temporal data. In addition, this framework aims at providing keys for a new interpretation and classification of spatio-temporal conceptual models. This work can be beneficial for researchers, students, and developers interested in advanced spatio-temporal modeling.


Sign in / Sign up

Export Citation Format

Share Document