Symmetry Elements, Symmetry Operations and Point Groups

1997 ◽  
pp. 1290-1292
Author(s):  
Boris Zapol ◽  
Peter Zapol

Closed expressions for matrix elements 〈 lm' | A (G)| lm 〉, where | lm 〉 are spherical functions and A (G) is the average of all symmetry operators of point group G, are derived for all point groups (PGs) and then used to obtain linear combinations of spherical functions that are totally symmetric under all symmetry operations of G. In the derivation, we exploit the product structure of the groups. The obtained expressions are used to explore properties of multipoles of symmetric charge distributions. We produce complete lists of selection rules for multipoles Q l and their moments Q lm , as well as of numbers of independent moments in a multipole, for any l and m and for all PGs. Periodicities and other trends in these properties are revealed.


2019 ◽  
Vol 15 (1) ◽  
pp. 88-92
Author(s):  
Wan Heng Fong ◽  
Aqilahfarhana Abdul Rahman ◽  
Nor Haniza Sarmin

In chemistry, point group is a type of group used to describe the symmetry of molecules. It is a collection of symmetry elements controlled by a form or shape which all go through one point in space, which consists of all symmetry operations that are possible for every molecule. Next, a set of number or matrices which assigns to the elements of a group and represents the multiplication of the elements is said to constitute representation of a group. Here, each individual matrix is called a representative that corresponds to the symmetry operations of point groups, and the complete set of matrices is called a matrix representation of the group. This research was aimed to relate the symmetry in point groups with group theory in mathematics using the concept of isomorphism, where elements of point groups and groups were mapped such that the isomorphism properties were fulfilled. Then, matrix representations of point groups were found based on the multiplication table where symmetry operations were represented by matrices. From this research, point groups of order less than eight were shown to be isomorphic with groups in group theory. In addition, the matrix representation corresponding to the symmetry operations of these point groups wasis presented. This research would hence connect the field of mathematics and chemistry, where the relation between groups in group theory and point groups in chemistry were shown.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1275-C1275
Author(s):  
Maureen Julian

Color clarifies diagrams point group and space group diagrams. For example, consider the general position diagrams and the symbol diagrams. Symmetry operations can be represented by matrices whose determinant is either plus one or minus one. In the former case there is no change of handedness and in the latter case there is a change of handedness. The general position diagrams emphasis this information by color-coding. The symbol diagrams are a little more complicated and will be demonstrated. The second topic is a comparison of the thirty-two three-dimensional point groups with their corresponding 18 abstract mathematical groups. The corresponding trees will be explored. This discussion leads into the topic of irreducible representations.


1989 ◽  
Vol 44 (10) ◽  
pp. 1221-1227 ◽  
Author(s):  
W. Preetz ◽  
W. Kuhr

The mixed chloro-bromo-rhodates(III) [RhClnBr6-n]3-, n = 1-5, have been separated for the first time by ion exchange chromatography on diethylaminoethyl-cellulose. Due to the stronger trans-effect of Br, as compared with Cl, on treatment of [RhBr6]3- with conc. HCl nearly pure cis/fac-isomers for n = 2, 3, 4 are formed. The reaction of [RhCl6]3- with conc. HBr yields mixtures of the cis/trans-isomers for n = 2, 4, which cannot be separated, but mer-[RhCl3Br3]3 is formed stereospecifically. The IR and Raman spectra of all isolated mixed ligand complexes are completely assigned according to point groups Oh, D3d, C4v, C3v and C2v, supported by normal coordinate analyses based on a general valence force field. The good agreement of calculated and observed frequencies confirms the assignments. Due to the stronger trans-influence of Br as compared to Cl, in all asymmetric Cl—Rh—Br axes the Rh—Br bonds are strengthened and the Rh—Cl bonds are weakened, indicated by valence force constants for Rh—Br approximately 14% higher, for Rh—Cl 10% lower, as compared with the values calculated for symmetric Br—Rh—Br and Cl—Rh—Cl axes, respectively.


2015 ◽  
Vol 92 (8) ◽  
pp. 1422-1425 ◽  
Author(s):  
Lan Chen ◽  
Hongwei Sun ◽  
Chengming Lai

Sign in / Sign up

Export Citation Format

Share Document