Low temperature waste heat recovery and potential for solar thermal energy in process industries-some successful case studies

Author(s):  
L.V.M. Reddy ◽  
P.R. Srinivasan
2021 ◽  
Vol 13 (9) ◽  
pp. 5223
Author(s):  
Miriam Benedetti ◽  
Daniele Dadi ◽  
Lorena Giordano ◽  
Vito Introna ◽  
Pasquale Eduardo Lapenna ◽  
...  

The recovery of waste heat is a fundamental means of achieving the ambitious medium- and long-term targets set by European and international directives. Despite the large availability of waste heat, especially at low temperatures (<250 °C), the implementation rate of heat recovery interventions is still low, mainly due to non-technical barriers. To overcome this limitation, this work aims to develop two distinct databases containing waste heat recovery case studies and technologies as a novel tool to enhance knowledge transfer in the industrial sector. Through an in-depth analysis of the scientific literature, the two databases’ structures were developed, defining fields and information to collect, and then a preliminary population was performed. Both databases were validated by interacting with companies which operate in the heat recovery technology market and which are possible users of the tools. Those proposed are the first example in the literature of databases completely focused on low-temperature waste heat recovery in the industrial sector and able to provide detailed information on heat exchange and the technologies used. The tools proposed are two key elements in supporting companies in all the phases of a heat recovery intervention: from identifying waste heat to choosing the best technology to be adopted.


2020 ◽  
Vol 12 (19) ◽  
pp. 8178
Author(s):  
Fahid Riaz ◽  
Kah Hoe Tan ◽  
Muhammad Farooq ◽  
Muhammad Imran ◽  
Poh Seng Lee

Low-grade heat is abundantly available as solar thermal energy and as industrial waste heat. Non concentrating solar collectors can provide heat with temperatures 75–100 °C. In this paper, a new system is proposed and analyzed which enhances the electrical coefficient of performance (COP) of vapour compression cycle (VCC) by incorporating low-temperature heat-driven ejectors. This novel system, ejector enhanced vapour compression refrigeration cycle (EEVCRC), significantly increases the electrical COP of the system while utilizing abundantly available low-temperature solar or waste heat (below 100 °C). This system uses two ejectors in an innovative way such that the higher-pressure ejector is used at the downstream of the electrically driven compressor to help reduce the delivery pressure for the electrical compressor. The lower pressure ejector is used to reduce the quality of wet vapour at the entrance of the evaporator. This system has been modelled in Engineering Equation Solver (EES) and its performance is theoretically compared with conventional VCC, enhanced ejector refrigeration system (EERS), and ejection-compression system (ECS). The proposed EEVCRC gives better electrical COP as compared to all the three systems. The parametric study has been conducted and it is found that the COP of the proposed system increases exponentially at lower condensation temperature and higher evaporator temperature. At 50 °C condenser temperature, the electrical COP of EEVCRC is 50% higher than conventional VCC while at 35 °C, the electrical COP of EEVCRC is 90% higher than conventional VCC. For the higher temperature heat source, and hence the higher generator temperatures, the electrical COP of EEVCRC increases linearly while there is no increase in the electrical COP for ECS. The better global COP indicates that a small solar collector will be needed if this system is driven by solar thermal energy. It is found that by using the second ejector at the upstream of the electrical compressor, the electrical COP is increased by 49.2% as compared to a single ejector system.


Author(s):  
Jack T. Nguyen

A patent pending concept is presented for a dry, closed-cycle power plant cooling system employing low temperature organic Rankine cycle waste heat recovery (ORC-WHR) in combination with cool thermal energy storage (TES). It offers a compelling way for power plants to operate like conventional once-through cooling (OTC) — i.e., without an efficiency penalty due to heat rate increase experienced by state-of-the-art dry, wet, and hybrid cooling systems — while eliminating water consumption and attached negative environmental impact. Further, cool TES provides power plants the desirable capability and benefits associated with grid-scale energy storage. Key components of the concept are comprised of developed technology and field-proven equipment. Performance estimates to convert from OTC for the Diablo Canyon nuclear-powered steam electric generating facility located in central California are presented to illustrate the real benefits gained verses closed-cycle wet cooling.


2021 ◽  
pp. 1-27
Author(s):  
Jian Zhang ◽  
Heejin Cho ◽  
Pedro Mago

Abstract Off-grid concepts for homes and buildings have been a fast-growing trend worldwide in the last few years because of the rapidly dropping cost of renewable energy systems and their self-sufficient nature. Off-grid homes/buildings can be enabled with various energy generation and storage technologies, however, design optimization and integration issues have not been explored sufficiently. This paper applies a multi-objective genetic algorithm (MOGA) optimization to obtain an optimal design of integrated distributed energy systems for off-grid homes in various climate regions. Distributed energy systems consisting of renewable and non-renewable power generation technologies with energy storage are employed to enable off-grid homes/buildings and meet required building electricity demands. In this study, the building types under investigation are residential homes. Multiple distributed energy resources are considered such as combined heat and power systems (CHP), solar photovoltaic (PV), solar thermal collector (STC), wind turbine (WT), as well as battery energy storage (BES) and thermal energy storage (TES). Among those technologies, CHP, PV, and WT are used to generate electricity, which satisfies the building's electric load, including electricity consumed for space heating and cooling. Solar thermal energy and waste heat recovered from CHP are used to partly supply the building's thermal load. Excess electricity and thermal energy can be stored in the BES and TES for later use. The MOGA is applied to determine the best combination of DERs and each component's size to reduce the system cost and carbon dioxide emission for different locations. Results show that the proposed optimization method can be effectively and widely applied to design integrated distributed energy systems for off-grid homes resulting in an optimal design and operation based on a trade-off between economic and environmental performance.


Author(s):  
L. Lopera ◽  
C. Nieto ◽  
A. C. Escudero ◽  
C. A. Bustamante ◽  
M. C. Fernández

Sign in / Sign up

Export Citation Format

Share Document