Dry, Closed-Cycle Cooling for Thermoelectric Power Plants Employing Low Temperature Organic Rankine Cycle Waste Heat Recovery and Cool Thermal Energy Storage

Author(s):  
Jack T. Nguyen

A patent pending concept is presented for a dry, closed-cycle power plant cooling system employing low temperature organic Rankine cycle waste heat recovery (ORC-WHR) in combination with cool thermal energy storage (TES). It offers a compelling way for power plants to operate like conventional once-through cooling (OTC) — i.e., without an efficiency penalty due to heat rate increase experienced by state-of-the-art dry, wet, and hybrid cooling systems — while eliminating water consumption and attached negative environmental impact. Further, cool TES provides power plants the desirable capability and benefits associated with grid-scale energy storage. Key components of the concept are comprised of developed technology and field-proven equipment. Performance estimates to convert from OTC for the Diablo Canyon nuclear-powered steam electric generating facility located in central California are presented to illustrate the real benefits gained verses closed-cycle wet cooling.

2021 ◽  
Author(s):  
Bipul Krishna Saha ◽  
Basab Chakraborty ◽  
Rohan Dutta

Abstract Industrial low-grade waste heat is lost, wasted and deposited in the atmosphere and is not put to any practical use. Different technologies are available to enable waste heat recovery, which can enhance system energy efficiency and reduce total energy consumption. Power plants are energy-intensive plants with low-grade waste heat. In the case of such plants, recovery of low-grade waste heat is gaining considerable interest. However, in such plants, power generation often varies based on market demand. Such variations may adversely influence any recovery system's performance and the economy, including the Organic Rankine Cycle (ORC). ORC technologies coupled with Cryogenic Energy Storage (CES) may be used for power generation by utilizing the waste heat from such power plants. The heat of compression in a CES may be stored in thermal energy storage systems and utilized in ORC or Regenerative ORC (RORC) for power generation during the system's discharge cycle. This may compensate for the variation of the waste heat from the power plant, and thereby, the ORC system may always work under-designed capacity. This paper presents the thermo-economic analysis of such an ORC system. In the analysis, a steady-state simulation of the ORC system has been developed in a commercial process simulator after validating the results with experimental data for a typical coke-oven plant. Forty-nine different working fluids were evaluated for power generation parameters, first law efficiencies, purchase equipment cost, and fixed investment payback period to identify the best working fluid.


Energy ◽  
2014 ◽  
Vol 72 ◽  
pp. 159-167 ◽  
Author(s):  
Filippo Cataldo ◽  
Rita Mastrullo ◽  
Alfonso William Mauro ◽  
Giuseppe Peter Vanoli

Energy ◽  
2016 ◽  
Vol 97 ◽  
pp. 460-469 ◽  
Author(s):  
Adriano Desideri ◽  
Sergei Gusev ◽  
Martijn van den Broek ◽  
Vincent Lemort ◽  
Sylvain Quoilin

Sign in / Sign up

Export Citation Format

Share Document