thermoelectric materials
Recently Published Documents


TOTAL DOCUMENTS

2357
(FIVE YEARS 697)

H-INDEX

104
(FIVE YEARS 20)

2022 ◽  
Vol 9 (1) ◽  
pp. 011303
Author(s):  
Zhou Li ◽  
Chong Xiao ◽  
Yi Xie

2022 ◽  
pp. 209-238
Author(s):  
Xinyi Chen ◽  
Yuanyuan Zheng ◽  
Xue Han ◽  
Yuanyuan Jing ◽  
Minzhi Du ◽  
...  

Alloys ◽  
2022 ◽  
Vol 1 (1) ◽  
pp. 3-14
Author(s):  
Mario Wolf ◽  
Jan Flormann ◽  
Timon Steinhoff ◽  
Gregory Gerstein ◽  
Florian Nürnberger ◽  
...  

A new approach for the development of thermoelectric materials, which focuses on a high-power factor instead of a large figure of merit zT, has drawn attention in recent years. In this context, the thermoelectric properties of Cu-Ni-based alloys with a very high electrical conductivity, a moderate Seebeck coefficient, and therefore a high power factor are presented as promising low-cost alternative materials for applications aiming to have a high electrical power output. The Cu-Ni-based alloys are prepared via an arc melting process of metallic nanopowders. The heavy elements tin and tungsten are chosen for alloying to further improve the power factor while simultaneously reducing the high thermal conductivity of the resulting metal alloy, which also has a positive effect on the zT value. Overall, the samples prepared with low amounts of Sn and W show an increase in the power factor and figure of merit zT compared to the pure Cu-Ni alloy. These results demonstrate the potential of these often overlooked metal alloys and the utilization of nanopowders for thermoelectric energy conversion.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Cheng Chi ◽  
Meng An ◽  
Xin Qi ◽  
Yang Li ◽  
Ruihan Zhang ◽  
...  

AbstractThere has been increasing interest in the emerging ionic thermoelectric materials with huge ionic thermopower. However, it’s challenging to selectively tune the thermopower of all-solid-state polymer materials because the transportation of ions in all-solid-state polymers is much more complex than those of liquid-dominated gels. Herein, this work provides all-solid-state polymer materials with a wide tunable thermopower range (+20~−6 mV K−1), which is different from previously reported gels. Moreover, the mechanism of p-n conversion in all-solid-state ionic thermoelectric polymer material at the atomic scale was presented based on the analysis of Eastman entropy changes by molecular dynamics simulation, which provides a general strategy for tuning ionic thermopower and is beneficial to understand the fundamental mechanism of the p-n conversion. Furthermore, a self-powered ionic thermoelectric thermal sensor fabricated by the developed p- and n-type polymers demonstrated high sensitivity and durability, extending the application of ionic thermoelectric materials.


Author(s):  
Robert Freer ◽  
Dursun Ekren ◽  
Tanmoy Ghosh ◽  
Kanishka Biswas ◽  
Pengfei Qiu ◽  
...  

Abstract This paper presents tables of key thermoelectric properties, which define thermoelectric conversion efficiency, for a wide range of inorganic materials. The 12 families of materials included in these tables are primarily selected on the basis of well established, internationally-recognised performance and their promise for current and future applications: Tellurides, Skutterudites, Half Heuslers, Zintls, Mg-Sb Antimonides, Clathrates, FeGa3–type materials, Actinides and Lanthanides, Oxides, Sulfides, Selenides, Silicides, Borides and Carbides. As thermoelectric properties vary with temperature, data are presented at room temperature to enable ready comparison, and also at a higher temperature appropriate to peak performance. An individual table of data and commentary are provided for each family of materials plus source references for all the data.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Shinichi Hata ◽  
Misaki Shiraishi ◽  
Soichiro Yasuda ◽  
Gergely Juhasz ◽  
Yukou Du ◽  
...  

Since future energy harvesting technologies require stable supply and high-efficiency energy conversion, there is an increasing demand for high-performance organic thermoelectric generators (TEGs) based on waterproof thermoelectric materials. The poor stability of n-type organic semiconductors in air and water has proved a roadblock in the development of reliable thermoelectric power generators. We developed a simple green route for preparing n-type carbon nanotubes (CNTs) by doping with cationic surfactants and fabricated films of the doped CNTs using only aqueous media. The thermoelectric properties of the CNT films were investigated in detail. The nanotubes doped using a cationic surfactant (cetyltrimethylammonium chloride (CTAC)) retained an n-doped state for at least 28 days when exposed to water and air, indicating higher stability than that for contemporary CNT-based thermoelectric materials. The wrapping of the surfactant molecules around the CNTs is responsible for blocking oxygen and water from attacking the CNT walls, thus, extending the lifetime of the n-doped state of the CNTs. We also fabricated thermoelectric power conversion modules comprising CTAC-doped (n-type) and sodium dodecylbenzenesulfonate- (SDBS-) doped (p-type) CNTs and tested their stabilities in water. The modules retained 80±2.4% of their initial maximum output power (at a temperature difference of 75°C) after being submerged in water for 30 days, even without any sealing fills to prevent device degradation. The remarkable stability of our CNT-based modules can enable the development of reliable soft electronics for underwater applications.


Author(s):  
Shuping Guo ◽  
Shashwat Anand ◽  
Madison K. Brod ◽  
Yongsheng Zhang ◽  
G. Jeffrey Snyder

Semiconducting half-Heusler (HH, XYZ) phases are promising thermoelectric materials owing to their versatile electronic properties. Because the valence band of half-Heusler phases benefits from the valence band extrema at several...


Author(s):  
Christian Zeuthen ◽  
Lasse Rabøl Jørgensen ◽  
Lise Joost Støckler ◽  
Martin Roelsgaard ◽  
Ann-Christin Dippel ◽  
...  

In recent years hierarchical thermoelectric materials have been engineered to reach record breaking thermoelectric figures-of-merit (zT) making them attractive in green transition energy conversion applications. PbTe constitutes an archetypical example,...


Sign in / Sign up

Export Citation Format

Share Document