Intake/S-Bend Diffuser Flow prediction Using Linear And Non-Linear Eddy-Viscosity And Second-Moment Closure Turbulence Models

Author(s):  
N.E. May
2011 ◽  
Vol 35 (3) ◽  
pp. 337-353 ◽  
Author(s):  
Farzad Bazdidi-Tehrani ◽  
Mehdi Jahromi

The present paper reports the time dependent simulation of a turbulent plane synthetic jet using an unsteady Reynolds averaged Navier-Stokes approach on the basis of the first and second moment closure turbulence models. All the applied turbulence models can capture a global feature of the long time averaged flow field quite well. However, the standard k – ε model yields a disappointing prediction of the turbulence field with inaccurately high levels of turbulence kinetic energy and normal Reynolds stress distributions. The second moment closure model with quadratic nonlinear pressure strain approximation shows the most reasonable prediction of the phase averaged flow and turbulence fields.


1995 ◽  
Vol 117 (4) ◽  
pp. 557-563 ◽  
Author(s):  
Hamn-Ching Chen

A multiblock numerical method, for the solution of the Reynolds-Averaged Navier-Stokes equations, has been used in conjunction with a near-wall Reynolds stress closure and a two-layer isotropic eddy viscosity model for the study of turbulent flow around a simple appendage-hull junction. Comparisons of calculations with experimental data clearly demonstrate the superior performance of the present second-order Reynolds stress (second-moment) closure over simpler isotropic eddy viscosity models. The second-moment solutions are shown to capture the most important features of appendage-hull juncture flows, including the formation and evolution of the primary and secondary horseshoe vortices, the complex three-dimensional separations, and interaction among the hull boundary layer, the appendage wake and the root vortex system.


2018 ◽  
Vol 48 (4) ◽  
pp. 905-923 ◽  
Author(s):  
Alexander W. Fisher ◽  
Lawrence P. Sanford ◽  
Malcolm E. Scully

AbstractObservations of turbulent kinetic energy, dissipation, and turbulent stress were collected in the middle reaches of Chesapeake Bay and were used to assess second-moment closure predictions of turbulence generated beneath breaking waves. Dissipation scaling indicates that the turbulent flow structure observed during a 10-day wind event was dominated by a three-layer response that consisted of 1) a wave transport layer, 2) a surface log layer, and 3) a tidal, bottom boundary layer limited by stable stratification. Below the wave transport layer, turbulent mixing was limited by stable stratification. Within the wave transport layer, where dissipation was balanced by a divergence in the vertical turbulent kinetic energy flux, the eddy viscosity was significantly underestimated by second-moment turbulence closure models, suggesting that breaking waves homogenized the mixed surface layer to a greater extent than the simple model of TKE diffusing away from a source at the surface. While the turbulent transport of TKE occurred largely downgradient, the intermittent downward sweeps of momentum generated by breaking waves occurred largely independent of the mean shear. The underprediction of stress in the wave transport layer by second-moment closures was likely due to the inability of the eddy viscosity model to capture the nonlocal turbulent transport of the momentum flux beneath breaking waves. Finally, the authors hypothesize that large-scale coherent turbulent eddies played a significant role in transporting momentum generated near the surface to depth.


AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 825-831
Author(s):  
Dirk G. Pfuderer ◽  
Claus Eifert ◽  
Johannes Janicka

Sign in / Sign up

Export Citation Format

Share Document