Numerical Method for Backward Heat Conduction Problems Using an Arbitrary-Order Finite Difference Method

Author(s):  
Kentaro Iijima
Author(s):  
Chandrashekhar Varanasi ◽  
Jayathi Y. Murthy ◽  
Sanjay Mathur

In recent years, there has been a great deal of interest in developing meshless methods for computational fluid dynamics (CFD) applications. In this paper, a meshless finite difference method is developed for solving conjugate heat transfer problems in complex geometries. Traditional finite difference methods (FDMs) have been restricted to an orthogonal or a body-fitted distribution of points. However, the Taylor series upon which the FDM is based is valid at any location in the neighborhood of the point about which the expansion is carried out. Exploiting this fact, and starting with an unstructured distribution of mesh points, derivatives are evaluated using a weighted least squares procedure. The system of equations that results from this discretization can be represented by a sparse matrix. This system is solved with an algebraic multigrid (AMG) solver. The implementation of Neumann, Dirichlet and mixed boundary conditions within this framework is described, as well as the handling of conjugate heat transfer. The method is verified through application to classical heat conduction problems with known analytical solutions. It is then applied to the solution of conjugate heat transfer problems in complex geometries, and the solutions so obtained are compared with more conventional unstructured finite volume methods. Metrics for accuracy are provided and future extensions are discussed.


Author(s):  
Imam Basuki ◽  
C Cari ◽  
A Suparmi

<p class="Normal1"><strong><em>Abstract: </em></strong><em>Partial Differential Equations (PDP) Laplace equation can be applied to the heat conduction. Heat conduction is a process that if two materials or two-part temperature material is contacted with another it will pass heat transfer. Conduction of heat in a triangle shaped object has a mathematical model in Cartesian coordinates. However, to facilitate the calculation, the mathematical model of heat conduction is transformed into the coordinates of the triangle. PDP numerical solution of Laplace solved using the finite difference method. Simulations performed on a triangle with some angle values α and β</em></p><p class="Normal1"><strong><em> </em></strong></p><p class="Normal1"><strong><em>Keywords:</em></strong><em>  heat transfer, triangle coordinates system.</em></p><p class="Normal1"><em> </em></p><p class="Normal1"><strong>Abstrak</strong> Persamaan Diferensial Parsial (PDP) Laplace  dapat diaplikasikan pada persamaan konduksi panas. Konduksi panas adalah suatu proses yang jika dua materi atau dua bagian materi temperaturnya disentuhkan dengan yang lainnya maka akan terjadilah perpindahan panas. Konduksi panas pada benda berbentuk segitiga mempunyai model matematika dalam koordinat cartesius. Namun untuk memudahkan perhitungan, model matematika konduksi panas tersebut ditransformasikan ke dalam koordinat segitiga. Penyelesaian numerik dari PDP Laplace diselesaikan menggunakan metode beda hingga. Simulasi dilakukan pada segitiga dengan beberapa nilai sudut  dan  </p><p class="Normal1"><strong> </strong></p><p class="Normal1"><strong>Kata kunci :</strong> perpindahan panas, sistem koordinat segitiga.</p>


2011 ◽  
Vol 79 ◽  
pp. 105-110
Author(s):  
Guo Jun Li ◽  
Xiao Ting Li ◽  
Hai Geng Chen

The most effective way of determining the whole billet temperature field is to use a simulation model. Large amount of calculation as well as computational time is consumed to employ two-dimensional finite difference method since the heating process is extremely complex, then it’s necessary to simplify the calculation process. In this paper, a simplified method in one-dimension format was presented to calculate two-dimensional heat conduction equations of heating slab. The billet simulated was placed in a changeable thermal flux boundary environment, in which the thermal flux was proportional to fourth power of temperature. During the heating process, the changeable parameters were taken into account: i. e different billet dimensions, different billet thermal conduction, different specific heat, etc. The comparision between results of two-dimensional finite difference method and the simplified method verified that the simplified method can satisfy accuracy requirement as well as calculation time saving, which enable the simplified method online using.


Sign in / Sign up

Export Citation Format

Share Document