A CRE Model Updating Method in Structural Dynamics with Uncertain Measurements

Author(s):  
Arnaud Deraemaeker ◽  
Pierre Ladevèze
2010 ◽  
Vol 24 (7) ◽  
pp. 2137-2159 ◽  
Author(s):  
J.L. Zapico-Valle ◽  
R. Alonso-Camblor ◽  
M.P. González-Martínez ◽  
M. García-Diéguez

Author(s):  
C F McCulloch ◽  
P Vanhonacker ◽  
E Dascotte

A method is proposed for updating finite element models of structural dynamics using the results of experimental modal analysis, based on the sensitivities to changes in physical parameters. The method avoids many of the problems of incompatibility and inconsistency between the experimental and analytical modal data sets and enables the user to express confidence in measured data and modelling assumptions, allowing flexible but automated model updating.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Hong Yin ◽  
Jingjing Ma ◽  
Kangli Dong ◽  
Zhenrui Peng ◽  
Pan Cui ◽  
...  

Model updating in structural dynamics has attracted much attention in recent decades. And high computational cost is frequently encountered during model updating. Surrogate model has attracted considerable attention for saving computational cost in finite element model updating (FEMU). In this study, a model updating method using frequency response function (FRF) based on Kriging model is proposed. The optimal excitation point is selected by using modal participation criterion. Initial sample points are chosen via design of experiment (DOE), and Kriging model is built using the corresponding acceleration frequency response functions. Then, Kriging model is improved via new sample points using mean square error (MSE) criterion and is used to replace the finite element model to participate in optimization. Cuckoo algorithm is used to obtain the updating parameters, where the objective function with the minimum frequency response deviation is constructed. And the proposed method is applied to a plane truss model FEMU, and the results are compared with those by the second-order response surface model (RSM) and the radial basis function model (RBF). The analysis results showed that the proposed method has good accuracy and high computational efficiency; errors of updating parameters are less than 0.2%; damage identification is with high precision. After updating, the curves of real and imaginary parts of acceleration FRF are in good agreement with the real ones.


Author(s):  
N A Z Abdullah ◽  
M S M Sani ◽  
M M Rahman ◽  
I Zaman

Author(s):  
K. Abasi ◽  
M. Asayesh ◽  
M. Nikravesh

Reliable finite element (FE) modeling in structural dynamics is very important for studies related to the safety of structural components used in industry. FE model updating is a tool to produce these reliable models. The method uses an initial FE model and experimental modal data of the structural components to modify physical parameters of the initial FE model, and a number of approaches have been developed to perform this task. This paper presents an overview of model updating and particularly its application for updating of cantilever model. An example of the need for model updating is a cantilever beam, where often the beam is assumed to be rigidly fixed at the clamped end. However, during tests it is often found that the beam has either a small rotation or deflection at the clamped end. If one has to construct the FE model without the knowledge of the experimental modal data, the natural assumption would be to include an ideal, fixed boundary condition, which may not be true. Even with such a simple structure the FE model is not reliable a priori, and based on intuition or engineering judgments it is difficult to estimate the values of the boundary stiffnesses. However, after creating an initial FE model, the model should be updated based on the experimental modal data obtained from modal tests so that the FE model may be used with confidence for further analysis.


Sign in / Sign up

Export Citation Format

Share Document