Biogenic Emissions of Volatile Organic Compounds from Higher Plants

Author(s):  
Ray Fall
2019 ◽  
Author(s):  
Qiuyue Zhao ◽  
Jun Bi ◽  
Zhenghao Ling ◽  
Qian Liu ◽  
Guofeng Shen ◽  
...  

Abstract. Understanding the composition, temporal variability, and source apportionment of volatile organic compounds (VOCs) is necessary for determining effective control measures to minimize VOCs and its related photochemical pollution. To provide a comprehensive analysis of VOC sources and their contributions to ozone (O3) formation in the Yangtze River Delta (YRD) – a region experiencing highest rates of industrial and economic development in China, we conducted a one-year sampling exercise for the first time at an urban site in Nanjing (JAES site). Alkanes were the dominant group at the JAES site, contributing ~ 53 % to the observed total VOCs, followed by aromatics (~ 17 %), acetylene (~ 17 %), and alkenes (~ 13 %). We identified seasonal variability in TVOCs with maximum and minimum concentrations in winter and summer, respectively. A morning and evening peak and a daytime trough were identified in the diurnal VOCs patterns. We identified the source apportionments of VOCs and their contributions to photochemical O3 formation using the Positive Matrix Factorization (PMF) and observation-based model together with a Master Chemical Mechanism (MCM). The PMF model identified five dominant VOC sources, with highest contributions from diesel vehicular exhausts (34 ± 5 %), followed by gasoline vehicular exhausts (27 ± 3 %), industrial emissions (19 ± 2 %), fuel evaporation (15 ± 2 %) and biogenic emissions (4 ± 1 %). The results from the OBM-MCM model simulation inferred photochemical O3 formation to be VOC-limited at the JAES site when considering both the reactivity and abundance of the individual VOC species in each source category. Further, VOCs from vehicular and industrial emissions were found to be the dominant control on O3 formation, particularly the VOC species m,p-xylene, toluene and propene, which top priorities should be given to the alleviation of photochemical smog. However, when considering the reactivity and abundance of VOC species, the contribution of biogenic emissions to O3 pollution was significantly reduced. Our results therefore highlight the need to consider both the abundance and reactivity of individual VOC species in order to develop effective control strategies to minimize photochemical pollution in Nanjing.


2014 ◽  
Vol 16 (10) ◽  
pp. 2301-2312 ◽  
Author(s):  
J. Timkovsky ◽  
P. Gankema ◽  
R. Pierik ◽  
R. Holzinger

A system of two plant chambers and a downstream reaction chamber has been set up to investigate the emission of biogenic volatile organic compounds (BVOCs) and possible effects of pollutants such as ozone.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 140 ◽  
Author(s):  
Manon Rocco ◽  
Aurélie Colomb ◽  
Jean-Luc Baray ◽  
Crist Amelynck ◽  
Bert Verreyken ◽  
...  

The Oxygenated Compounds in the Tropical Atmosphere: Variability and Exchanges (OCTAVE) campaign aimed to improve the assessment of the budget and role of oxygenated volatile organic compounds (OVOCs) in tropical regions, and especially over oceans, relying on an integrated approach combining in situ measurements, satellite retrievals, and modeling. As part of OCTAVE, volatile organic compounds (VOCs) were measured using a comprehensive suite of instruments on Reunion Island (21.07° S, 55.38° E) from 7 March to 2 May 2018. VOCs were measured at a receptor site at the Maïdo observatory during the entire campaign and at two source sites: Le Port from 19 to 24 April 2018 (source of anthropogenic emissions) and Bélouve from 25 April to 2 May 2018 (source of biogenic emissions) within a mobile lab. The Maïdo observatory is a remote background site located at an altitude of 2200 m, whereas Bélouve is located in a tropical forest to the east of Maïdo and Le Port is an urban area located northwest of Maïdo. The major objective of this study was to understand the sources and distributions of atmospheric formaldehyde (HCHO) in the Maïdo observatory on Reunion Island. To address this objective, two different approaches were used to quantify and determine the main drivers of HCHO at Maïdo. First, a chemical-kinetics-based (CKB) calculation method was used to determine the sources and sinks (biogenic, anthropogenic/primary, or secondary) of HCHO at the Maïdo site. The CKB method shows that 9% of the formaldehyde formed from biogenic emissions and 89% of HCHO had an unknown source; that is, the sources cannot be explicitly described by this method. Next, a positive matrix factorization (PMF) model was applied to characterize the VOC source contributions at Maïdo. The PMF analysis including VOCs measured at the Maïdo observatory shows that the most robust solution was obtained with five factors: secondary biogenic accounting for 17%, primary anthropogenic/solvents (24%), primary biogenic (14%), primary anthropogenic/combustion (22%), and background (23%). The main contributions to formaldehyde sources as described by the PMF model are secondary biogenic (oxidation of biogenic VOCs with 37%) and background (32%). Some assumptions were necessary concerning the high percentage of unknown HCHO sources of the CKB calculation method such as the biogenic emission factor resulting in large discrepancies between the two methods.


Sign in / Sign up

Export Citation Format

Share Document