biogenic emissions
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 57)

H-INDEX

44
(FIVE YEARS 4)

Author(s):  
Maite Bauwens ◽  
Bert Verreyken ◽  
Trissevgeni Stavrakou ◽  
Jean-François Müller ◽  
Isabelle De Smedt

Abstract Trends of formaldehyde (HCHO) linked to anthropogenic activity over large cities located in the Asian continent are calculated for the period 2005–2019 using the Quality Assurance for Essential Climate Variables (QA4ECV) dataset from the Ozone Monitoring Instrument (OMI) aboard the Aura satellite. Contributions due to anthropogenic emissions are isolated by applying a correction based on near-surface temperature in order to account for interference from local biogenic emissions. Strong positive trends are derived over the Middle East and the Indian subcontinent (up to 3.6% yr-1 and 2.4% yr-1 respectively) where regulations of anthropogenic non-methane volatile organic compound (NMVOC) emissions are currently limited. Weaker trends are observed over cities located in China, where the air pollution action plan (2013) may have mitigated NMVOC trends early on, but targeted legislature concerning VOC emissions was only recently introduced. HCHO trends for cities located in South and Equatorial Asia are mostly not significant or very uncertain. Cities located in Taiwan and Japan (regions in Asia where legislation has been in place since the early 2000s) display mostly negative trends.


2021 ◽  
Author(s):  
T. Petäjä ◽  
K. Tabakova ◽  
A. Manninen ◽  
E. Ezhova ◽  
E. O’Connor ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1264
Author(s):  
Jorge Herrera-Murillo ◽  
Tomas Soto-Murillo ◽  
José Félix Rojas-Marín ◽  
Victor Hugo Beita-Guerrero ◽  
María Hidalgo-Gutiérrez

The concentrations of water-soluble anions present in PM10 collected from ambient air in four sites of Costa Rica’s greater metropolitan area (GAM) were analyzed. Samples were collected over a 24-h period for three days during the 2011–2018 period, using high-volume air samplers with mass flow controller. The PM10 samples were collected using quartz fiber filters, which were analyzed using ion chromatography to identify organic and inorganic ions. The annual averages for PM10, F−, Cl−, and SO42− showed significant differences between the sampling sites, with Uruca (UR) consistently registering annual averages above the maximum concentration established by Costa Rica’s air quality regulations (30 µgm−3). The ions analyzed contributed 33%, 34%, 35%, and 37% of the PM10 mass for sampling sites UR, HA, AL, and CA, respectively. Using Spearman correlations and principal component analysis (PCA), the following contributions were identified: biomass burning, secondary particle formation processes from mobile and stationary emissions, and biogenic emissions. For each variable, seasonal patterns and trends were analyzed using time series with additive decomposition.


2021 ◽  
Vol 14 (9) ◽  
pp. 5583-5605
Author(s):  
Annika Vogel ◽  
Hendrik Elbern

Abstract. Atmospheric chemical forecasts heavily rely on various model parameters, which are often insufficiently known, such as emission rates and deposition velocities. However, a reliable estimation of resulting uncertainties with an ensemble of forecasts is impaired by the high dimensionality of the system. This study presents a novel approach, which substitutes the problem into a low-dimensional subspace spanned by the leading uncertainties. It is based on the idea that the forecast model acts as a dynamical system inducing multivariate correlations of model uncertainties. This enables an efficient perturbation of high-dimensional model parameters according to their leading coupled uncertainties. The specific algorithm presented in this study is designed for parameters that depend on local environmental conditions and consists of three major steps: (1) an efficient assessment of various sources of model uncertainties spanned by independent sensitivities, (2) an efficient extraction of leading coupled uncertainties using eigenmode decomposition, and (3) an efficient generation of perturbations for high-dimensional parameter fields by the Karhunen–Loéve expansion. Due to their perceived simulation challenge, the method has been applied to biogenic emissions of five trace gases, considering state-dependent sensitivities to local atmospheric and terrestrial conditions. Rapidly decreasing eigenvalues state that highly correlated uncertainties of regional biogenic emissions can be represented by a low number of dominant components. Depending on the required level of detail, leading parameter uncertainties with dimensions of 𝒪(106) can be represented by a low number of about 10 ensemble members. This demonstrates the suitability of the algorithm for efficient ensemble generation for high-dimensional atmospheric chemical parameters.


2021 ◽  
Author(s):  
Bavand Sadeghi ◽  
Arman Pouyaei ◽  
Yunsoo Choi ◽  
Bernhard Rappenglueck

Abstract. The seasonal variations of volatile organic compounds (VOCs) was studied in the Houston metropolitan area in the summertime and wintertime of 2018. The analysis of hourly measurements obtained from the automated gas chromatograph (auto-GC) network showed the total VOC average concentrations of 28.68 ppbC in the summertime and 33.92 ppbC in the wintertime. The largest contributions came from alkane compounds, which accounted for 61 % and 82 % of VOCs in the summer and winter, respectively. We performed principal component analysis (PCA) and Positive Matrix Factorization (PMF) and identified seven factors in the summertime and six factors in the wintertime, among which alkane species formed three factors according to their rate of reactions in both seasons: (1) the emissions of long-lived tracers from oil and natural gas (ONG long-lived species), (2) fuel evaporation, and (3) the emissions of short-lived tracers from oil and natural gas (ONG short-lived species). Two other similar factors were (4) emissions of aromatic compounds and (5) alkene tracers of ethylene and propylene. Summertime factor 6 was associated with acetylene, and one extra summertime factor 7 was influenced by the biogenic emissions. The factor 6 of wintertime was affected by vehicle exhaust. Higher nighttime and lower daytime values of the ethylene/acetylene ratios during the summertime indicated the stronger impacts of ethylene photochemical degradation. Also, the exploration of the photochemical processes of the VOCs showed that the ethylene and propylene had the highest contributions to the summertime and wintertime ozone formation as well as the emissions of the isoprene, which showed a high impact on summertime ozone. Our results acknowledged that ethylene and propylene continue to be significant emissions of VOCs, and their emissions control would help the mitigation of the ozone of Ship Channel. Based on trajectory analysis, we identified main VOC emission sources in Houston Ship Channel (HSC) local industrial areas and regions south of the HSC. Ambient VOC concentrations measured at the HSC were influenced by the emissions from the petrochemical sectors and industrial complexes, especially from the Baytown refinery and Bayport industrial district next to the HSC and Galveston Bay refineries at the south of the study area.


2021 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Jaqueline Natiele Pereira ◽  
Adalgiza Fornaro ◽  
Marcelo Vieira-Filho

We investigated the influence of natural and anthropogenic sources on bulk atmospheric deposition chemistry, from November 2017 until October 2019, in a Brazilian agricultural area. The pH mean value was 5.99 (5.52–8.46) and most deposition samples (~98%) were alkaline (pH > 5.60). We identified Ca2+ as the predominant species, accounting for 33% of the total ionic species distribution and the main precursor of atmospheric acidity neutralization (Neutralization Factor = 6.63). PMF analysis resulted in four factors, which demonstrated the influence of anthropogenic and natural sources, such as fertilizer application and production, marine intrusion/biomass burning, and biogenic emissions, and revealed the importance of atmospheric neutralization processes.


Sign in / Sign up

Export Citation Format

Share Document