Promoting crop pest control by plant diversification in agricultural landscapes: A conceptual framework for analysing feedback loops between agro-ecological and socio-economic effects

2022 ◽  
pp. 133-165
Author(s):  
Aude Vialatte ◽  
Anaïs Tibi ◽  
Audrey Alignier ◽  
Valérie Angeon ◽  
Laurent Bedoussac ◽  
...  
2021 ◽  
Author(s):  
Han Chunyu ◽  
Fang Jiandong ◽  
Li Bajin ◽  
Zhao Yudong

2019 ◽  
Vol 34 (7) ◽  
pp. 1653-1673 ◽  
Author(s):  
Aude Vialatte ◽  
Cecile Barnaud ◽  
Julien Blanco ◽  
Annie Ouin ◽  
Jean-Philippe Choisis ◽  
...  

2014 ◽  
Vol 18 (6) ◽  
pp. 2141-2166 ◽  
Author(s):  
Y. Elshafei ◽  
M. Sivapalan ◽  
M. Tonts ◽  
M. R. Hipsey

Abstract. It is increasingly acknowledged that, in order to sustainably manage global freshwater resources, it is critical that we better understand the nature of human–hydrology interactions at the broader catchment system scale. Yet to date, a generic conceptual framework for building models of catchment systems that include adequate representation of socioeconomic systems – and the dynamic feedbacks between human and natural systems – has remained elusive. In an attempt to work towards such a model, this paper outlines a generic framework for models of socio-hydrology applicable to agricultural catchments, made up of six key components that combine to form the coupled system dynamics: namely, catchment hydrology, population, economics, environment, socioeconomic sensitivity and collective response. The conceptual framework posits two novel constructs: (i) a composite socioeconomic driving variable, termed the Community Sensitivity state variable, which seeks to capture the perceived level of threat to a community's quality of life, and acts as a key link tying together one of the fundamental feedback loops of the coupled system, and (ii) a Behavioural Response variable as the observable feedback mechanism, which reflects land and water management decisions relevant to the hydrological context. The framework makes a further contribution through the introduction of three macro-scale parameters that enable it to normalise for differences in climate, socioeconomic and political gradients across study sites. In this way, the framework provides for both macro-scale contextual parameters, which allow for comparative studies to be undertaken, and catchment-specific conditions, by way of tailored "closure relationships", in order to ensure that site-specific and application-specific contexts of socio-hydrologic problems can be accommodated. To demonstrate how such a framework would be applied, two socio-hydrological case studies, taken from the Australian experience, are presented and the parameterisation approach that would be taken in each case is discussed. Preliminary findings in the case studies lend support to the conceptual theories outlined in the framework. It is envisioned that the application of this framework across study sites and gradients will aid in developing our understanding of the fundamental interactions and feedbacks in such complex human–hydrology systems, and allow hydrologists to improve social–ecological systems modelling through better representation of human feedbacks on hydrological processes.


2021 ◽  
Vol 9 ◽  
Author(s):  
Thomas Perrot ◽  
Adrien Rusch ◽  
Camille Coux ◽  
Sabrina Gaba ◽  
Vincent Bretagnolle

Managing regulating ecosystem services delivered by biodiversity in farmland is a way to maintain crop yields while reducing the use of agrochemicals. Because semi-natural habitats provide shelter and food for pest enemies, a higher proportion of semi-natural habitats in the landscape or their proximity to crops may enhance pest control in arable fields. However, the ways in which the spatial arrangement of these habitats affects the delivery of this beneficial ecosystem service to crops remains poorly known. Here, we investigated the relative effects of the amount of grassland in the landscape versus the distance to the nearest grassland on the predation rates of weed seeds and aphids into 52 cereal fields. We found that both seed and aphid predation levels increased with the proportion of grassland in a 500 m radius buffer while the distance to the nearest grassland displayed no effect. We show that increasing from 0 to 50% the proportion of grasslands in a 500 m radius, respectively, increased seed and aphid predation by 38 and 20%. In addition to the strong effect of the proportion of grassland, we found that seed predation increased with the proportion of forest fragments while aphid predation increased with the proportion of organic farming in the landscape. Overall, our results reveal that natural pest control in cereal crops is not related to the distance to the nearest grassland, suggesting that natural enemies are not limited by their dispersal ability. Our study indicates that maintaining key semi-natural habitats, such as grasslands, is needed to ensure natural pest control and support food production in agricultural landscapes.


2021 ◽  
Author(s):  
Deyatima Ghosh ◽  
Sabyasachi Chatterjee ◽  
Parthiba Basu

Potential of frogs as important natural pest control agents has been highlighted earlier. But the effectiveness of frogs in regulating the pest load in intensive agricultural landscape in a multi-trophic system is not clear. We performed controlled field experiment in paddy field with a varying density (observed in high and low agricultural intensity (AI) areas) of a commonly found frog species and compared the pest and pest predator build-up. The consumption rate of the model amphibian was studied using enclosure experiment. The consequent trophic cascade effect of frogs on both crop pest and other arthropod pest predator was analyzed using mathematical population growth models. Although frogs consumed pests, they could not reduce crop pest abundance. Although a lesser frog density found in high AI areas significantly affected the pest predator abundance. Based on the functional response result, mathematical growth models demonstrated that with a constant harvesting factor (Holling Type II) frogs will always have a negative impact on the beneficial natural enemy population due to intraguild predation thereby limiting its potential as a pest regulator. Our study challenges the notion of frogs as an effective pest control agent and argues that increasing habitat diversity might improve overall biological pest suppression.


Sign in / Sign up

Export Citation Format

Share Document