dispersal ability
Recently Published Documents


TOTAL DOCUMENTS

483
(FIVE YEARS 183)

H-INDEX

43
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Joseph J Milton ◽  
Matthias Affenzeller ◽  
Richard J Abbott ◽  
Hans-Peter Comes

Background: Parapatric (or budding) speciation is increasingly recognized as an important phenomenon in plant evolution but its role in extreme (e.g. desert) environments is poorly documented. Aims: To test this speciation model in a hypothesized sister pair, the Southwest and North African disjunct Senecio flavus and its putative progenitor, the Namibian Desert endemic S. englerianus. Methods: Phylogenetic inferences were combined with niche divergence tests, morphometrics, and experimental genetic approaches. We also evaluated the potential role of an African Dry Corridor (ADC) in promoting the hypothesized northward expansion of S. flavus (from Namibia), using palaeodistribution models. Results: Belonging to an isolated (potentially relict) clade, the two morphologically distinct species show pronounced niche divergence in Namibia and signs of digenic epistatic hybrid incompatibility (based on F2 pollen fertility). The presence of connate fluked pappus hairs in S. flavus, likely increasing dispersal ability, is controlled by a single gene locus. Conclusions: Our results provide support for a rare example of budding speciation in which a wider ranged derivative (S. flavus) originated at the periphery of a smaller ranged progenitor (S. englerianus) in the Namib Desert region. The Southwest and North African disjunction of S. flavus could have been established by dispersal across intermediate ADC areas during periods of (Late) Pleistocene aridification.


2021 ◽  
Author(s):  
Angela L Larsen-Gray ◽  
Craig Loehle

Abstract When working forest stands are harvested, vegetated strips along streams are often retained as part of forestry best management practices (BMPs) to protect water quality. These riparian buffers, known as streamside management zones, when following forestry BMP recommendations, also likely provide benefits to various terrestrial wildlife species. To better understand the role of riparian buffers in contributing to biological diversity in working forest landscapes, we reviewed literature (n = 30) that reported on herpetofauna, bird, and mammal responses to riparian buffers in the eastern United States. Although few results were consistent among taxa, community composition commonly varied among riparian buffer widths. Narrower riparian buffers more commonly supported edge and disturbance-associated species whereas wider riparian buffers tended to support interior-associated species. We did not find a consistent width that supported all terrestrial wildlife species studied. Study Implications: Based on our findings, it may be most efficacious to use varying riparian buffer widths across a landscape to provide structural conditions for a diversity of wildlife species. Some interior species may be best conserved on older managed stands or other retained areas in the landscape rather than riparian buffers. Landscape context and functionality of riparian buffers as movement corridors need to be further investigated, as this is an assumed but not quantified indirect benefit for various terrestrial wildlife species and perhaps especially important for species with low vagility or low dispersal ability that require older forest or riparian areas.


Author(s):  
Joseph Manthey ◽  
Yann Bourgeois ◽  
Yonas Meheretu ◽  
Stephane Boissinot

Taxon-specific characteristics and extrinsic climatic and geological forces may both shape population differentiation and speciation. In geographically and taxonomically focused investigations, differentiation may occur synchronously as species respond to the same external conditions. Conversely, when evolution is investigated in taxa with largely varying traits, population differentiation and speciation is complex and shaped by interactions of Earth’s template and species-specific traits. As such, it is important to characterize evolutionary histories broadly across the tree of life, especially in geographic regions that are exceptionally diverse and under pressures from human activities such as in biodiversity hotspots. Here, using whole-genome sequencing data, we characterize genomic variation in populations of six Ethiopian Highlands forest bird species separated by a lowland biogeographic barrier, the Great Rift Valley (GRV). In all six species, populations on either side of the GRV exhibited significant but varying levels of genetic differentiation. Species’ dispersal ability was negatively correlated with levels of population differentiation. Isolation with migration models indicated varied patterns of population differentiation and connectivity among populations of the focal species. We found that demographic histories—estimated for each individual—varied by both species and population but were consistent between individuals of the same species and sampling region. We found that genomic diversity varied by half an order of magnitude across species, and that this variation could largely be explained by the harmonic mean of effective population size over the past 200,000 years. Overall, we found that even in highly dispersive species like birds, the GRV acts as a substantial biogeographic barrier.


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 664
Author(s):  
Geraldo B. Freire ◽  
Thayane Silva ◽  
Hernani Oliveira ◽  
Chloe Collier ◽  
Hanna P. Rodrigues ◽  
...  

Introduction: In animals, body size is correlated with many aspects of natural history, such as life span, abundance, dispersal capacity and diet breadth. However, contrasting trends have been reported for the relationship between body size and these ecological traits. Methods: Fruit-feeding butterflies were used to investigate whether body size is correlated with species abundance, dispersal, permanence, and larval diet breadth in a Neotropical savanna in Brazil (Cerrado). We used Blomberg’s K and Phylogenetic Generalized Least Squares models (PGLS) to measure phylogenetic signal strength in species traits and to estimate size–dispersal–diet breadth associations, while also taking shared ancestry into account. Results: 539 individuals from 27 species were captured, and 190 individuals were recaptured, representing a 35% recapture rate. We found body size to be negatively associated with butterfly abundance, and positively associated with dispersal level, distance traveled, number of traps visited, individual permanence, and diet breadth. These results indicate that larger butterflies are more likely to disperse over longer distances. Moreover, larger butterflies have more generalized larval diets, based on the number of host plant families, genera, and phylogenetic diversity of the host plants they consume as larvae. Smaller butterflies rely on fewer resources, which is reflected in their higher survival in small patches and may explain their lower dispersal ability and higher diet specialization. Nevertheless, lower dispersal ability may, if not compensated by large population sizes, threaten small-bodied species inhabiting environments, such as the Cerrado, which have intense deforestation rates. Conclusions: Body size is positively associated with dispersal and diet breadth for the fruit-feeding butterflies collected in this study.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1653
Author(s):  
Annika Hoffmann ◽  
Roger Funk ◽  
Marina E. H. Müller

Dispersal processes play an essential role in cereal diseases caused by phytopathogenic Fusarium. However, most empirical studies of Fusarium spore dispersal have focused on vertical transport by rain splash, while wind dispersal has been mostly neglected. Our objective was to determine the ability of Fusarium conidiospores to disperse via wind under controlled conditions in a wind tunnel study. Ten Fusarium species with diverse spore varieties were studied by placing them in the wind stream at wind velocities of 5 and 8 m s−1 and collecting them after 6 m and a period of 1 h using a newly developed air sampling box. Although spore concentrations were high in the releasing Petri Dishes, the tested isolates were recaptured in only 18 of 78 runs. F. equiseti and F. cerealis were the most frequently recovered species. Changing abiotic conditions, wind speed, and spore shapes had no significant effect on Fusarium spore recapture rates. Another experiment showed that conidiospores were rarely released from the grown mycelium. Therefore, the importance of wind alone as a dispersal medium for Fusarium conidiospores may have been overestimated so far. Further studies should investigate the importance of carrier media or mobile linkers combined with the wind dispersal of spores.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lynn Govaert ◽  
Luis J. Gilarranz ◽  
Florian Altermatt

AbstractSpecies react to environmental change via plastic and evolutionary responses. While both of them determine species’ survival, most studies quantify these responses individually. As species occur in communities, competing species may further influence their respective response to environmental change. Yet, how environmental change and competing species combined shape plastic and genetic responses to environmental change remains unclear. Quantifying how competition alters plastic and genetic responses of species to environmental change requires a trait-based, community and evolutionary ecological approach. We exposed unicellular aquatic organisms to long-term selection of increasing salinity—representing a common and relevant environmental change. We assessed plastic and genetic contributions to phenotypic change in biomass, cell shape, and dispersal ability along increasing levels of salinity in the presence and absence of competition. Trait changes in response to salinity were mainly due to mean trait evolution, and differed whether species evolved in the presence or absence of competition. Our results show that species’ evolutionary and plastic responses to environmental change depended both on competition and the magnitude of environmental change, ultimately determining species persistence. Our results suggest that understanding plastic and genetic responses to environmental change within a community will improve predictions of species’ persistence to environmental change.


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 622
Author(s):  
Klemen Čandek ◽  
Ingi Agnarsson ◽  
Greta J. Binford ◽  
Matjaž Kuntner

Dispersal ability can affect levels of gene flow thereby shaping species distributions and richness patterns. The intermediate dispersal model of biogeography (IDM) predicts that in island systems, species diversity of those lineages with an intermediate dispersal potential is the highest. Here, we tested this prediction on long-jawed spiders (Tetragnatha) of the Caribbean archipelago using phylogenies from a total of 318 individuals delineated into 54 putative species. Our results support a Tetragnatha monophyly (within our sampling) but reject the monophyly of the Caribbean lineages, where we found low endemism yet high diversity. The reconstructed biogeographic history detects a potential early overwater colonization of the Caribbean, refuting an ancient vicariant origin of the Caribbean Tetragnatha as well as the GAARlandia land-bridge scenario. Instead, the results imply multiple colonization events to and from the Caribbean from the mid-Eocene to late-Miocene. Among arachnids, Tetragnatha uniquely comprises both excellently and poorly dispersing species. A direct test of the IDM would require consideration of three categories of dispersers; however, long-jawed spiders do not fit one of these three a priori definitions, but rather represent a more complex combination of attributes. A taxon such as Tetragnatha, one that readily undergoes evolutionary changes in dispersal propensity, can be referred to as a ‘dynamic disperser’.


2021 ◽  
Vol 13 (23) ◽  
pp. 13067
Author(s):  
Maximilian Axer ◽  
Robert Schlicht ◽  
Rico Kronenberg ◽  
Sven Wagner

(1) Due to global warming, distribution ranges of temperate tree species are shifting northwards and upslope to cooler areas. Shifts in distribution first become visible through changes in regeneration dynamics. However, the future distribution of tree species in the face of rapid climate change depends not only on the climatic suitability of the tree species, but also on its ability to disperse into new habitats. The aim of the study was therefore to examine how the distribution of European beech and European oak shifts and how species can spread from fragmented seed trees. (2) In order to investigate the shift in distribution of beech and oak, the bioclimatic envelopes of the old trees and different size classes of the natural regeneration were compared. Subsequently, a simulation of the potential distribution for the present climate, as well as for the climate for the reference period 2091–2100, for three different representative concentration pathways (RCP) scenarios was determined. In order to determine which of these areas can actually be colonised, a dispersal potential for the species was determined using a quantile regression, taking habitat fragmentation into account. (3) The results of the present study demonstrate range shifts of the tree species regeneration distribution (B0, B1 and B2) compared to the overstorey distribution (OST). While oak regeneration shows an expansion of its distribution in the cold-wet range, beech regeneration shows a reduction of its distribution in the dry-warm range. As the dispersal potential of oak exceeds that of beech, it is expected that oak will be better able to spread from fragmented seed trees. However, the results also indicate that many areas, despite climatic suitability, cannot be colonised due to too large dispersal distances. (4) For the forest management, this results in an important planning tool for future tree species composition, as climatic suitability, habitat connectivity and dispersal ability are taken into account.


2021 ◽  
Author(s):  
James J. Shelley ◽  
Owen J. Holland ◽  
Stephen E. Swearer ◽  
Timothy Dempster ◽  
Matthew C. Le Feuvre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document