Probing Ca2+ release mechanisms using sea urchin egg homogenates

Author(s):  
Yu Yuan ◽  
Gihan S. Gunaratne ◽  
Jonathan S. Marchant ◽  
Sandip Patel
Author(s):  
Armando A. Genazzani ◽  
Heather L. Wilson ◽  
Antony Galione

The sea urchin egg has proved a reliable and robust system for measuring intracellular calcium release in response to three independent mechanisms: inositol 1,4,5 trisphosphate, cyclic ADP-ribose and the recently identified molecule, nicotinic acid adenine dinucleotide phosphate (NAADP). These calcium release mechanisms have been studied in homogenates of Lytechinus pictus and Spongylocentrotus purpuratus, which are two sea urchin species located off the west coast of the USA. A new calcium-release model from a species of sea urchin present off the coasts of Britain, Psammechinus miliaris is characterized and described. Although the Ca2+-release characteristics in this species do not differ from those of the other two sea urchin species, it may provide a more economical and convenient model for European scientists.


1996 ◽  
Vol 316 (3) ◽  
pp. 709-711 ◽  
Author(s):  
Eduardo N. CHINI ◽  
Thomas P. DOUSA

We investigated the dependence of nicotinate–adenine dinucleotide phosphate (NAADP)-induced Ca2+ release from intracellular stores of sea urchin egg homogenates, upon extravesicular Ca2+. In contrast to the Ca2+ release induced by inositol 1´,4´,5´trisphosphate (IP3) or cyclic ADP-ribose (cADPR), the Ca2+ release induced by NAADP was completely independent of the free extravesicular Ca2+ over a wide range of concentrations (0–0.1 mM). The Ca2+ release triggered by either cADPR or IP3 was biphasically modulated by extravesicular Ca2+, and the Ca2+ release by these agents was abolished when the extravesicular Ca2+ was removed by chelation with 2 mM EGTA. On the other hand, NAADP-triggered Ca2+ release was not influenced by EGTA. These data indicate that while both cADPR and IP3 systems behave as functional Ca2+-induced Ca2+ release mechanisms, NAADP activates a Ca2+ release mechanism which is independent of the presence of extravesicular Ca2+. Therefore, the NAADP-sensitive Ca2+ release mechanisms may have a unique regulatory impact upon intracellular Ca2+ homoeostasis.


2000 ◽  
Vol 346 (3) ◽  
pp. 743-749 ◽  
Author(s):  
Keith T. JONES ◽  
Miho MATSUDA ◽  
John PARRINGTON ◽  
Matilda KATAN ◽  
Karl SWANN

A soluble phospholipase C (PLC) from boar sperm generates InsP3 and hence causes Ca2+ release when added to sea urchin egg homogenate. This PLC activity is associated with the ability of sperm extracts to cause Ca2+ oscillations in mammalian eggs following fractionation. A sperm PLC may, therefore, be responsible for causing the observed Ca2+ oscillations at fertilization. In the present study we have further characterized this boar sperm PLC activity using sea urchin egg homogenate. Consistent with a sperm PLC acting on egg PtdIns(4,5)P2, the ability of sperm extracts to release Ca2+ was blocked by preincubation with the PLC inhibitor U73122 or by the addition of neomycin to the homogenate. The Ca2+-releasing activity was also detectable in sperm from other species and in whole testis extracts. However, activity was not observed in extracts from other tissues. Moreover recombinant PLCβ1, -γ1, -γ2, -∆1, all of which had higher specific activities than boar sperm extracts, were not able to release Ca2+ in the sea urchin egg homogenate. In addition these PLCs were not able to cause Ca2+ oscillations following microinjection into mouse eggs. These results imply that the sperm PLC possesses distinct properties that allow it to hydrolyse PtdIns(4,5)P2 in eggs.


Embryologia ◽  
1966 ◽  
Vol 9 (3) ◽  
pp. 170-183 ◽  
Author(s):  
TOMIO YANAGISAWA ◽  
NAOHIDE ISONO
Keyword(s):  

1954 ◽  
Vol 6 (2) ◽  
pp. 491-496 ◽  
Author(s):  
B. Hagström ◽  
Britt Hagström
Keyword(s):  

1996 ◽  
Vol 24 (1) ◽  
pp. 100S-100S
Author(s):  
Kay Ohlendieck ◽  
William J. Lennarz
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document