Psammechinus miliaris egg homogenate as a model to investigate Ca2+-release mechanisms

Author(s):  
Armando A. Genazzani ◽  
Heather L. Wilson ◽  
Antony Galione

The sea urchin egg has proved a reliable and robust system for measuring intracellular calcium release in response to three independent mechanisms: inositol 1,4,5 trisphosphate, cyclic ADP-ribose and the recently identified molecule, nicotinic acid adenine dinucleotide phosphate (NAADP). These calcium release mechanisms have been studied in homogenates of Lytechinus pictus and Spongylocentrotus purpuratus, which are two sea urchin species located off the west coast of the USA. A new calcium-release model from a species of sea urchin present off the coasts of Britain, Psammechinus miliaris is characterized and described. Although the Ca2+-release characteristics in this species do not differ from those of the other two sea urchin species, it may provide a more economical and convenient model for European scientists.

1996 ◽  
Vol 319 (2) ◽  
pp. 613-617 ◽  
Author(s):  
Jaswinder K SETHI ◽  
Ruth M EMPSON ◽  
Antony GALIONE

Cyclic ADP ribose (cADPR) is a potent Ca2+-releasing agent, and putative second messenger, the endogenous levels of which are tightly regulated by synthetic (ADP-ribosyl cyclases) and degradative (cADPR hydrolase) enzymes. These enzymes have been characterized in a number of mammalian and invertebrate tissues and their activities are often found on a single polypeptide. β-NAD+, cGMP and nitric oxide (NO) have been reported to mobilize Ca2+ in the sea urchin egg via the cADPR-mediated pathway. We now report that in sea urchin egg homogenates, nicotinamide inhibits the Ca2+-mobilizing action of β-NAD+, cGMP and NO, but has no effect on cADPR-induced Ca2+ release. Moreover, nicotinamide inhibits cGMP-induced regenerative Ca2+ waves in the intact sea urchin egg. By successfully separating the cADPR-metabolizing machinery from that which releases Ca2+, we have shown that nicotinamide inhibits cADPR-mediated Ca2+ signalling at the level of cADPR generation. Importantly, nicotinamide had no effect upon the hydrolysis of cADPR, and its selective action on cyclase activity was supported by its inhibition of purified Aplysia ADP-ribosyl cyclase, which does not exhibit detectable hydrolytic activity. The action of nicotinamide in blocking Ca2+ release by β-NAD+, cGMP and NO strongly suggests that these agents act as modulators of cADPR synthesis rather than to sensitize calcium release channels to cADPR.


1996 ◽  
Vol 316 (3) ◽  
pp. 709-711 ◽  
Author(s):  
Eduardo N. CHINI ◽  
Thomas P. DOUSA

We investigated the dependence of nicotinate–adenine dinucleotide phosphate (NAADP)-induced Ca2+ release from intracellular stores of sea urchin egg homogenates, upon extravesicular Ca2+. In contrast to the Ca2+ release induced by inositol 1´,4´,5´trisphosphate (IP3) or cyclic ADP-ribose (cADPR), the Ca2+ release induced by NAADP was completely independent of the free extravesicular Ca2+ over a wide range of concentrations (0–0.1 mM). The Ca2+ release triggered by either cADPR or IP3 was biphasically modulated by extravesicular Ca2+, and the Ca2+ release by these agents was abolished when the extravesicular Ca2+ was removed by chelation with 2 mM EGTA. On the other hand, NAADP-triggered Ca2+ release was not influenced by EGTA. These data indicate that while both cADPR and IP3 systems behave as functional Ca2+-induced Ca2+ release mechanisms, NAADP activates a Ca2+ release mechanism which is independent of the presence of extravesicular Ca2+. Therefore, the NAADP-sensitive Ca2+ release mechanisms may have a unique regulatory impact upon intracellular Ca2+ homoeostasis.


1986 ◽  
Vol 103 (6) ◽  
pp. 2333-2342 ◽  
Author(s):  
K Swann ◽  
M Whitaker

Sea urchin egg activation at fertilization is progressive, beginning at the point of sperm entry and moving across the egg with a velocity of 5 microns/s. This activation wave (Kacser, H., 1955, J. Exp. Biol., 32:451-467) has been suggested to be the result of a progressive release of calcium from a store within the egg cytoplasm (Jaffe, L. F., 1983, Dev. Biol., 99:265-276). The progressive release of calcium may be due to the production of inositol trisphosphate (InsP3), a second messenger. We show here that a wave of calcium release crosses the Lytechinus pictus egg; the peak of the wave travels with a velocity of 5 microns/s; microinjection of InsP3 causes the release of calcium within the egg; calcium release (as judged by fertilization envelope elevation) is abolished by prior injection of the calcium chelator EGTA; neomycin, an inhibitor of InsP3 production, does not prevent the release of calcium in response to InsP3 but does abolish the wave of calcium release; the egg cytoplasm rapidly buffers microinjected calcium; the calcium concentration required to cause fertilization membrane elevation when microinjected is very similar to that required to stimulate the production of InsP3 in vitro; and the progressive fertilization membrane elevation seen after microinjection of calcium buffers appears to be due to diffusion of the buffer across the egg cytoplasm rather than to the induction of the activation wave. We conclude that InsP3 diffuses through the egg cytoplasm much more readily than calcium ions and that calcium-stimulated production of InsP3 and InsP3-induced calcium release from an internal store can account for the progressive release of calcium at fertilization.


1994 ◽  
Vol 163 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Wayne R. Buck ◽  
Erin E. Hoffmann ◽  
Terese L. Rakow ◽  
Sheldon S. Shen

1954 ◽  
Vol 31 (2) ◽  
pp. 208-217
Author(s):  
MARTYNAS YČAS

1. Activity corresponding to phosphoglucomutase, phosphohexoisomerase, aldolase, triosephosphate dehydrogenase, enolase and lactic dehydrogenase has been demonstrated in homogenates prepared from unfertilized sea-urchin eggs (Strongylocentrotus purpuratus and Lytechinus pictus). 2. The presence of cytochromes a and b1 has been confirmed. These cytochromes sediment in a relatively low centrifugal field. 3. No cytochrome c could be demonstrated, although cytochrome c is both reduced and oxidized by homogenates, and addition of cytochrome c increases the endogenous respiration and oxidation of succinate. 4. These results support the view that the usual glycolytic pathway operates in the sea-urchin egg and is the principal route of oxidation of carbohydrate.


1997 ◽  
Vol 273 (3) ◽  
pp. H1082-H1089 ◽  
Author(s):  
P. Lahouratate ◽  
J. Guibert ◽  
J. F. Faivre

Cyclic ADP-ribose (cADPR), an endogenous metabolite of beta-NAD+, activates Ca2+ release from endoplasmic reticulum in sea urchin eggs via the ryanodine receptor (RyR) pathway. A similar role has been proposed in cardiac sarcoplasmic reticulum (SR), although this remains controversial. We therefore investigated the ability of cADPR to induce Ca2+ release from canine cardiac SR microsomes using fluo 3 to monitor extravesicular Ca2+ concentration. We found that cADPR induced Ca2+ release in a concentration-dependent manner, whereas neither its precursor, NAD+, nor its metabolite, ADP-ribose, elicited a consistent effect. In addition, an additive effect on calcium release between cADPR and 9-Me-7-Br-eudistomin-D (MBED), an activator of RyR, was found as well as no cross-desensitization between cADPR and MBED. Specific blockers of the RyR did not abolish the cADPR-induced Ca2+ release. These results provide evidence for cADPR-induced Ca2+ release from dog cardiac SR via a novel mechanism which is independent of RyR activation.


Sign in / Sign up

Export Citation Format

Share Document