Predicting unsafe driving risk among commercial truck drivers using machine learning: Lessons learned from the surveillance of 20 million driving miles

2021 ◽  
Vol 159 ◽  
pp. 106285
Author(s):  
Amir Mehdizadeh ◽  
Mohammad Ali Alamdar Yazdi ◽  
Miao Cai ◽  
Qiong Hu ◽  
Alexander Vinel ◽  
...  
i-com ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 19-32
Author(s):  
Daniel Buschek ◽  
Charlotte Anlauff ◽  
Florian Lachner

Abstract This paper reflects on a case study of a user-centred concept development process for a Machine Learning (ML) based design tool, conducted at an industry partner. The resulting concept uses ML to match graphical user interface elements in sketches on paper to their digital counterparts to create consistent wireframes. A user study (N=20) with a working prototype shows that this concept is preferred by designers, compared to the previous manual procedure. Reflecting on our process and findings we discuss lessons learned for developing ML tools that respect practitioners’ needs and practices.


2021 ◽  
Vol 51 (3) ◽  
pp. 9-16
Author(s):  
José Suárez-Varela ◽  
Miquel Ferriol-Galmés ◽  
Albert López ◽  
Paul Almasan ◽  
Guillermo Bernárdez ◽  
...  

During the last decade, Machine Learning (ML) has increasingly become a hot topic in the field of Computer Networks and is expected to be gradually adopted for a plethora of control, monitoring and management tasks in real-world deployments. This poses the need to count on new generations of students, researchers and practitioners with a solid background in ML applied to networks. During 2020, the International Telecommunication Union (ITU) has organized the "ITU AI/ML in 5G challenge", an open global competition that has introduced to a broad audience some of the current main challenges in ML for networks. This large-scale initiative has gathered 23 different challenges proposed by network operators, equipment manufacturers and academia, and has attracted a total of 1300+ participants from 60+ countries. This paper narrates our experience organizing one of the proposed challenges: the "Graph Neural Networking Challenge 2020". We describe the problem presented to participants, the tools and resources provided, some organization aspects and participation statistics, an outline of the top-3 awarded solutions, and a summary with some lessons learned during all this journey. As a result, this challenge leaves a curated set of educational resources openly available to anyone interested in the topic.


2020 ◽  
Vol 54 (12) ◽  
pp. 942-947
Author(s):  
Pol Mac Aonghusa ◽  
Susan Michie

Abstract Background Artificial Intelligence (AI) is transforming the process of scientific research. AI, coupled with availability of large datasets and increasing computational power, is accelerating progress in areas such as genetics, climate change and astronomy [NeurIPS 2019 Workshop Tackling Climate Change with Machine Learning, Vancouver, Canada; Hausen R, Robertson BE. Morpheus: A deep learning framework for the pixel-level analysis of astronomical image data. Astrophys J Suppl Ser. 2020;248:20; Dias R, Torkamani A. AI in clinical and genomic diagnostics. Genome Med. 2019;11:70.]. The application of AI in behavioral science is still in its infancy and realizing the promise of AI requires adapting current practices. Purposes By using AI to synthesize and interpret behavior change intervention evaluation report findings at a scale beyond human capability, the HBCP seeks to improve the efficiency and effectiveness of research activities. We explore challenges facing AI adoption in behavioral science through the lens of lessons learned during the Human Behaviour-Change Project (HBCP). Methods The project used an iterative cycle of development and testing of AI algorithms. Using a corpus of published research reports of randomized controlled trials of behavioral interventions, behavioral science experts annotated occurrences of interventions and outcomes. AI algorithms were trained to recognize natural language patterns associated with interventions and outcomes from the expert human annotations. Once trained, the AI algorithms were used to predict outcomes for interventions that were checked by behavioral scientists. Results Intervention reports contain many items of information needing to be extracted and these are expressed in hugely variable and idiosyncratic language used in research reports to convey information makes developing algorithms to extract all the information with near perfect accuracy impractical. However, statistical matching algorithms combined with advanced machine learning approaches created reasonably accurate outcome predictions from incomplete data. Conclusions AI holds promise for achieving the goal of predicting outcomes of behavior change interventions, based on information that is automatically extracted from intervention evaluation reports. This information can be used to train knowledge systems using machine learning and reasoning algorithms.


Author(s):  
Julien Siebert ◽  
Lisa Joeckel ◽  
Jens Heidrich ◽  
Adam Trendowicz ◽  
Koji Nakamichi ◽  
...  

AbstractNowadays, systems containing components based on machine learning (ML) methods are becoming more widespread. In order to ensure the intended behavior of a software system, there are standards that define necessary qualities of the system and its components (such as ISO/IEC 25010). Due to the different nature of ML, we have to re-interpret existing qualities for ML systems or add new ones (such as trustworthiness). We have to be very precise about which quality property is relevant for which entity of interest (such as completeness of training data or correctness of trained model), and how to objectively evaluate adherence to quality requirements. In this article, we present how to systematically construct quality models for ML systems based on an industrial use case. This quality model enables practitioners to specify and assess qualities for ML systems objectively. In addition to the overall construction process described, the main outcomes include a meta-model for specifying quality models for ML systems, reference elements regarding relevant views, entities, quality properties, and measures for ML systems based on existing research, an example instantiation of a quality model for a concrete industrial use case, and lessons learned from applying the construction process. We found that it is crucial to follow a systematic process in order to come up with measurable quality properties that can be evaluated in practice. In the future, we want to learn how the term quality differs between different types of ML systems and come up with reference quality models for evaluating qualities of ML systems.


2021 ◽  
Author(s):  
David Dempsey ◽  
Shane Cronin ◽  
Andreas Kempa-Liehr ◽  
Martin Letourneur

<p>Sudden steam-driven eruptions at tourist volcanoes were the cause of 63 deaths at Mt Ontake (Japan) in 2014, and 22 deaths at Whakaari (New Zealand) in 2019. Warning systems that can anticipate these eruptions could provide crucial hours for evacuation or sheltering but these require reliable forecasting. Recently, machine learning has been used to extract eruption precursors from observational data and train forecasting models. However, a weakness of this data-driven approach is its reliance on long observational records that span multiple eruptions. As many volcano datasets may only record one or no eruptions, there is a need to extend these techniques to data-poor locales.</p><p>Transfer machine learning is one approach for generalising lessons learned at data-rich volcanoes and applying them to data-poor ones. Here, we tackle two problems: (1) generalising time series features between seismic stations at Whakaari to address recording gaps, and (2) training a forecasting model for Mt Ruapehu augmented using data from Whakaari. This required that we standardise data records at different stations for direct comparisons, devise an interpolation scheme to fill in missing eruption data, and combine volcano-specific feature matrices prior to model training.</p><p>We trained a forecast model for Whakaari using tremor data from three eruptions recorded at one seismic station (WSRZ) and augmented by data from two other eruptions recorded at a second station (WIZ). First, the training data from both stations were standardised to a unit normal distribution in log space. Then, linear interpolation in feature space was used to infer missing eruption features at WSRZ. Under pseudo-prospective testing, the augmented model had similar forecasting skill to one trained using all five eruptions recorded at a single station (WIZ). However, extending this approach to Ruapehu, we saw reduced performance indicating that more work is needed in standardisation and feature selection.</p>


Sign in / Sign up

Export Citation Format

Share Document