A rhodamine based dye for sensing of group 13 metal ions

2021 ◽  
pp. 339378
Author(s):  
Ananta Hazra ◽  
Partha Roy
Keyword(s):  
1989 ◽  
Vol 67 (11) ◽  
pp. 1708-1710 ◽  
Author(s):  
Zaihui Zhang ◽  
T. L. Thomas Hui ◽  
Chris Orvig

A series of tris(3-hydroxy-2-methyl-4-pyridinonato)metal(III) and tris(3-hydroxy-6-hydroxymethyl-4-pyridinonato)metal(III) complexes have been prepared in water by one-pot synthesis directly from maltol and kojic acid, respectively, and the metal ion (M = Al, Ga, In) with an appropriate amine. The pyridinones have substituents at the ring nitrogen atom (CH3, C2H5). The tris(3-hydroxy-4-pyronato)metal(III) complexes are formed insitu and these undergo nucleophilic attack by the primary amine; the appropriate tris(3-hydroxy-4-pyridinonato)metal(III) complexes are obtained. This method bypasses the sequential syntheses of ligand and metal complex, and has improved the yields of the tris(ligand)metal complexes, in particular by making them much more easily accessible. The electronic effects of binding the pyrone to the metal ions and of the substituents on the pyrone ring on the reactivity are discussed. Keywords: 3-hydroxy-4 pyridinone complexes, group 13 metal ions, one-pot synthesis.


2006 ◽  
Vol 45 (26) ◽  
pp. 10688-10697 ◽  
Author(s):  
Van S. Thoi ◽  
Jay R. Stork ◽  
Douglas Magde ◽  
Seth M. Cohen
Keyword(s):  

2011 ◽  
Vol 14 (6) ◽  
pp. 831-835 ◽  
Author(s):  
Cristina Nuñez ◽  
Javier Fernandez-Lodeiro ◽  
Mário Dinis ◽  
Miguel Larguinho ◽  
José Luis Capelo ◽  
...  

Author(s):  
R. Ai ◽  
H.-J. Fan ◽  
L. D. Marks

It has been known for a long time that electron irradiation induces damage in maximal valence transition metal oxides such as TiO2, V2O5, and WO3, of which transition metal ions have an empty d-shell. This type of damage is excited by electronic transition and can be explained by the Knoteck-Feibelman mechanism (K-F mechanism). Although the K-F mechanism predicts that no damage should occur in transition metal oxides of which the transition metal ions have a partially filled d-shell, namely submaximal valence transition metal oxides, our recent study on ReO3 shows that submaximal valence transition metal oxides undergo damage during electron irradiation.ReO3 has a nearly cubic structure and contains a single unit in its cell: a = 3.73 Å, and α = 89°34'. TEM specimens were prepared by depositing dry powders onto a holey carbon film supported on a copper grid. Specimens were examined in Hitachi H-9000 and UHV H-9000 electron microscopes both operated at 300 keV accelerating voltage. The electron beam flux was maintained at about 10 A/cm2 during the observation.


Author(s):  
Hiroki Kurata ◽  
Kazuhiro Nagai ◽  
Seiji Isoda ◽  
Takashi Kobayashi

Electron energy loss spectra of transition metal oxides, which show various fine structures in inner shell edges, have been extensively studied. These structures and their positions are related to the oxidation state of metal ions. In this sence an influence of anions coordinated with the metal ions is very interesting. In the present work, we have investigated the energy loss near-edge structures (ELNES) of some iron compounds, i.e. oxides, chlorides, fluorides and potassium cyanides. In these compounds, Fe ions (Fe2+ or Fe3+) are octahedrally surrounded by six ligand anions and this means that the local symmetry around each iron is almost isotropic.EELS spectra were obtained using a JEM-2000FX with a Gatan Model-666 PEELS. The energy resolution was about leV which was mainly due to the energy spread of LaB6 -filament. The threshole energies of each edges were measured using a voltage scan module which was calibrated by setting the Ni L3 peak in NiO to an energy value of 853 eV.


Sign in / Sign up

Export Citation Format

Share Document