fine structures
Recently Published Documents


TOTAL DOCUMENTS

1117
(FIVE YEARS 112)

H-INDEX

55
(FIVE YEARS 5)

2022 ◽  
Vol 278 ◽  
pp. 118972
Author(s):  
Zhongwei Zhang ◽  
Yaqi Hu ◽  
Jiajia Zhao ◽  
Yu Zhang ◽  
Yining Ying ◽  
...  

Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 13
Author(s):  
Hao Geng ◽  
Zhiyuan Gao ◽  
Guorun Fang ◽  
Yangmin Xie

Dense scanning is an effective solution for refined geometrical modeling applications. The previous studies in dense environment modeling mostly focused on data acquisition techniques without emphasizing autonomous target recognition and accurate 3D localization. Therefore, they lacked the capability to output semantic information in the scenes. This article aims to make complementation in this aspect. The critical problems we solved are mainly in two aspects: (1) system calibration to ensure detail-fidelity for the 3D objects with fine structures, (2) fast outlier exclusion to improve 3D boxing accuracy. A lightweight fuzzy neural network is proposed to remove most background outliers, which was proven in experiments to be effective for various objects in different situations. With precise and clean data ensured by the two abovementioned techniques, our system can extract target objects from the original point clouds, and more importantly, accurately estimate their center locations and orientations.


2021 ◽  
Vol 923 (2) ◽  
pp. 268
Author(s):  
Guannan Gao ◽  
Qiangwei Cai ◽  
Shaojie Guo ◽  
Min Wang

Abstract A GOES M1.9 flare took place in active region AR 11153 on 2011 February 9. With a resolution of 200 kHz and a time cadence of 80 ms, the reverse-drifting (RS) type-III bursts, intermittent sequence of type-U bursts, drifting pulsation structure (DPS), and fine structures were observed by the Yunnan Observatories Solar Radio Spectrometer (YNSRS). Combined information revealed by the multiwavelength data indicated that after the DPS was observed by YNSRS, the generation rate of type-U bursts suddenly increased to 5 times what it had been. In this event, the generation rate of type-U bursts may depend on the magnetic-reconnection rate. Our observations are consistent with previous numerical simulation results. After the first plasmoid produced (plasma instability occurred), the magnetic-reconnection rate suddenly increased by 5 to 8 times. Furthermore, after the DPS, the frequency range of the turnover frequency of type-U bursts was obviously broadened to thrice what it was before, which indicates a fluctuation amplitude of the density in the loop top. Our observations also support numerical simulations during the flare-impulsive phase. Turbulence occurs at the top of the flare loop and the plasmoids can trap nonthermal particles, causing density fluctuation at the loop top. The observations are generally consistent with the results of numerical simulations, helping us to better understand the characteristics of the whole physical process of eruption.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7163
Author(s):  
Karolina Filipowska ◽  
Marek T. Pawlikowski ◽  
Marcin Andrzejak

There is experimental evidence of high vibronic activity that accompanies the allowed transition between the ground state and the lowest electronic singlet excited state of oligofurans that contain two, three, and four furan rings. The absorption and emission spectra of the three lowest oligofurans measured at liquid nitrogen temperature show distinct fine structures that are reproduced using the projection-based model of vibronic coupling (with Dushinsky rotation included) parameterized utilizing either Density Functional Theory (DFT, with several different exchange-correlation functionals) or ab initio (CC2) quantum chemistry calculations. Using as a reference the experimental data concerning the electronic absorption and fluorescence for the eight lowest oligofurans, we first analyzed the performance of the exchange-correlation functionals for the electronic transition energies and the reorganization energies. Subsequently, we used the best functionals alongside with the CC2 method to explore how the reorganization energies are distributed among the totally symmetric vibrations, identify the normal modes that dominate in the fine structures present in the absorption and emission bands, and trace their evolution with the increasing number of rings in the oligofuran series. Confrontation of the simulated spectra with the experiment allows for the verification of the performance of the selected DFT functionals and the CC2 method.


2021 ◽  
Vol 22 (22) ◽  
pp. 12393
Author(s):  
Elvira Sgobba ◽  
Yohann Daguerre ◽  
Marco Giampà

Classic metabolomic methods have proven to be very useful to study functional biology and variation in the chemical composition of different tissues. However, they do not provide any information in terms of spatial localization within fine structures. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) does and reaches at best a spatial resolution of 0.25 μm depending on the laser setup, making it a very powerful tool to analyze the local complexity of biological samples at the cellular level. Here, we intend to give an overview of the diversity of the molecules and localizations analyzed using this method as well as to update on the latest adaptations made to circumvent the complexity of samples. MALDI MSI has been widely used in medical sciences and is now developing in research areas as diverse as entomology, microbiology, plant biology, and plant–microbe interactions, the rhizobia symbiosis being the most exhaustively described so far. Those are the fields of interest on which we will focus to demonstrate MALDI MSI strengths in characterizing the spatial distributions of metabolites, lipids, and peptides in relation to biological questions.


2021 ◽  
pp. 105017
Author(s):  
Sihan Zhao ◽  
Bing Wei ◽  
Xinbo He ◽  
Yiwen Li ◽  
Xiaolong Wei

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiro Usukura ◽  
Akihiro Narita ◽  
Tomoharu Matsumoto ◽  
Eiji Usukura ◽  
Takeshi Sunaoshi ◽  
...  

AbstractThe scanning electron microscope (SEM) has been reassembled into a new type of cryo-electron microscope (cryo-TSEM) by installing a new cryo-transfer holder and anti-contamination trap, which allowed simultaneous acquisition of both transmission images (STEM images) and surface images (SEM images) in the frozen state. The ultimate temperatures of the holder and the trap reached − 190 °C and − 210 °C, respectively, by applying a liquid nitrogen slush. The STEM images at 30 kV were comparable to, or superior to, the images acquired with conventional transmission electron microscope (100 kV TEM) in contrast and sharpness. The unroofing method was used to observe membrane cytoskeletons instead of the frozen section and the FIB methods. Deep sublimation of ice surrounding unroofed cells by regulating temperature enabled to emerge intracellular fine structures in thick frozen cells. Hence, fine structures in the vicinity of the cell membrane such as the cytoskeleton, polyribosome chains and endoplasmic reticulum (ER) became visible. The ER was distributed as a wide, flat structure beneath the cell membrane, forming a large spatial network with tubular ER.


Sign in / Sign up

Export Citation Format

Share Document