The Boeing Delta IV launch vehicle—Pulse-settling approach for second-stage hydrogen propellant management

2007 ◽  
Vol 61 (1-6) ◽  
pp. 416-424 ◽  
Author(s):  
Michael D. Berglund ◽  
Charles E. Bassett ◽  
James M. Kelso ◽  
John Mishic ◽  
Dean Schrage
Author(s):  
Michael D. Berglund ◽  
Charles E. Bassett ◽  
James M. Kelso ◽  
John Mishic ◽  
Dean Schrage

1999 ◽  
Author(s):  
Toshihiko Nakagawa ◽  
Tatsuru Tokunaga ◽  
Osamu Kitayama ◽  
Akira Konno

1985 ◽  
Author(s):  
I. YAMAZAKI ◽  
H. MAEKAWA ◽  
T. NAKAGEWA ◽  
K. SHIBUKAWA ◽  
H. KATSUTA

2008 ◽  
Author(s):  
Alex A. Kazemi ◽  
John W. Goepp ◽  
David B. Larson ◽  
Mark E. Wuestling

2001 ◽  
Vol 48 (5-12) ◽  
pp. 451-459 ◽  
Author(s):  
Dave Schweikle ◽  
Jim Simpson
Keyword(s):  

2013 ◽  
Vol 50 (2) ◽  
pp. 411-422 ◽  
Author(s):  
Thomas Jazra ◽  
Dawid Preller ◽  
Michael K. Smart

2014 ◽  
Vol 25 (3-4) ◽  
pp. 114-119
Author(s):  
A. A. Baldin

One of the topical problems in modern aerospace engineering is accordance between ecological requirements and performance of the vehicle. On the other hand, problem of economical efficiency leads to change of the main criterion of designing to the minimization of costs (instead of maximal performance). According to modern trends of “low-cost” vehicles, different concepts of the future cost-effective launch vehicles are considered. It is necessary to validate these concepts according to requirements of ecological safety for the purpose of detection of the dominant launch vehicle configuration. Typical configurations of the future 'low-cost' launch vehicle are presented by 6 conceptual groups (Koelle, 2001). Conceptual group 1 (CG1) is presented by the Ballistic “Single stage to orbit” (SSTO) reusable vehicle. All vehicles which use classical rocketry scheme of the propulsion trajectory are called “Ballistic” i.e. the ballistic vehicle is lifted to orbit under the impact of rocket engines thrust. CG1-vehicle is able to reach the low earth orbit (LEO) without stage separation reducing the number of required rocket engines. Technological feasibility of SSTO concepts is proven by numerous studies (Koelle, 2001). CG2 representatives are ballistic “Two stages to orbit” (TSTO) reusable vehicles. The difference between CG1 and CG2 consists in application of vacuum rocket engines in the second stage  and, consequently, stage separation. CG2 are the most mass-effective vehicles. CG3 is presented by the winged SSTO vehicles with rocket propulsion by “Lifting body” aerodynamic scheme. Ascensional force is provided by the aerodynamic shape of the vehicle’s structure at high speeds. Winged TSTO vehicles with rocket propulsion and parallel or tandem staging form the CG4. The winged configuration provides wide landing capability for both stages. CG5 is presented by winged TSTO vehicles with airbreathing propulsion in the first stage and rocket-propelled second stage. Airbreathing jet engines provide high reusability ratio comparing with other concepts as well as the widest landing capability. Aerospace Plane with scramjet-rocket propulsion forms CG6. The vehicle is able to reach near-cosmic speed in rarefied layers of the atmosphere and then accelerate with rocket engines. The most ecologically important resemblance of represented concepts is reusability. This reduces space debris formation (due to lack of waste hardware). Reusable launch vehicles can also be used to return the spent satellites. Structural differences between the concepts form 3 criterions of comparison by ecological impact: 1) propellant toxicity; 2) safety of surface facilities (vehicle damage inside the atmosphere); 3) probability of space debris formation (vehicle damage outside the atmosphere). Comparison of the concepts by these criterions allows substantiating the most ecologically acceptable direction of research. Results of the comparison demonstrate that the most ecologically acceptable low-cost launch vehicle configuration is: Ballistic SSTO or TSTO reusable launch vehicle with “LOX+LH2” propellant. The results can be explained by following way: combustion products of the propellant “liquid oxygen + liquid hydrogen” are absolutely safe for environment. It also provides maximal performance of rocket engine (due to the highest specific impulse). Ballistic ascent scheme allows using relatively simple technologies and provides high reliability level. In combination with minimal time of atmospheric flight this provides high level of safety for surface facilities. These results may be used for substantiation of dominant research direction.


Sign in / Sign up

Export Citation Format

Share Document