actuation system
Recently Published Documents


TOTAL DOCUMENTS

1050
(FIVE YEARS 232)

H-INDEX

32
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Mackenzie Tidball ◽  
Richard Beblo ◽  
Tizoc Cruz-Gonzalez ◽  
Geoffrey Frank
Keyword(s):  

2021 ◽  
Vol 64 (12) ◽  
pp. 95-103
Author(s):  
Haojian Jin ◽  
Jingxian Wang ◽  
Swarun Kumar ◽  
Jason Hong

Despite widespread popularity, today's microwave ovens are limited in their cooking capabilities, given that they heat food blindly, resulting in a nonuniform and unpredictable heating distribution. We present software-defined cooking (SDC), a low-cost closed-loop microwave oven system that aims to heat food in a software-defined thermal trajectory. SDC achieves this through a novel high-resolution heat sensing and actuation system that uses microwave-safe components to augment existing microwaves. SDC first senses the thermal gradient by using arrays of neon lamps that are charged by the electromagnetic (EM) field a microwave produces. SDC then modifies the EM-field strength to desired levels by accurately moving food on a programmable turntable toward sensed hot and cold spots. To create a more skewed arbitrary thermal pattern, SDC further introduces two types of programmable accessories: A microwave shield and a susceptor. We design and implement one experimental test bed by modifying a commercial off-the-shelf microwave oven. Our evaluation shows that SDC can programmatically create temperature deltas at a resolution of 21°C with a spatial resolution of 3 cm without the programmable accessories, and 183°C with them. We further demonstrate how an SDC-enabled microwave can be enlisted to perform unexpected cooking tasks: Cooking meat and fat in bacon discriminatively and heating milk uniformly.


Author(s):  
Oleg Testoni ◽  
Sandro Christen ◽  
Sampada Bodkhe ◽  
Andrea Bergamini ◽  
Paolo Ermanni

This work introduces a novel concept of modular, shape-adaptable sandwich panel with a distributed actuation system based on shape memory alloys (SMA). The panel consists of a modular arrangement of rigid cells connected with compliant active joints. Each joint hosts a SMA wire, which can be controlled independently, enabling the panel to achieve multiple shapes and complex curvatures with a single design. A numerical model of the actuators is developed combining the SMA model proposed by Brinson with a finite element model of the compliant joints, and validated against experimental results. Further, a demonstrator of the panel is manufactured and tested implementing four different actuation patterns and measuring the final shapes with a digital image correlation system. The results prove the capability of the proposed concept to achieve both in plane and out-of-plane deformations in the order of millimeters to centimeters, and to reproduce shapes with double curvatures. With the possibility to integrate sensors and additional components inside the core, the proposed shape-adaptable panel can be used to realize smart structures, which might be used for morphing aerodynamic surfaces or reconfigurable space structures.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7720
Author(s):  
Manuel Andrés Vélez-Guerrero ◽  
Mauro Callejas-Cuervo ◽  
Stefano Mazzoleni

Mechatronic systems that allow motorized activation in robotic exoskeletons have evolved according to their specific applications and the characteristics of the actuation system, including parameters such as size, mechanical properties, efficiency, and power draw. Additionally, different control strategies and methods could be implemented in various electronic devices to improve the performance and usability of these devices, which is desirable in any application. This paper proposes the integration and testing of a high-torque, servo-driven joint and its electronic controller, exposing its use in a robotic exoskeleton prototype as a case study. Following a brief background review, the development and implementation of the proposal are presented, allowing the control of the servo-driven joint in terms of torque, rotational velocity, and position through a straightforward, closed-loop control architecture. Additionally, the stability and performance of the servo-driven joint were assessed with and without load. In conclusion and based on the obtained results, the servo-driven joint and its control system demonstrate consistent performance under the proposed test protocol (max values: angular velocity 97 °/s, torque 33 Nm, positioning RMSE 1.46°), enabling this approach for use in various applications related to robotic exoskeletons, including human performance enhancement, rehabilitation, or support for daily living activities.


Author(s):  
Tobias Vonderbank ◽  
Pierre Marc Laßl Chavez ◽  
Katharina Schmitz

Extensive actuation forces and strokes are required for the actuation of large sized valves normally implemented in high power hydraulic systems. A hydraulically piloted operation is, for now, the most suitable solution and state of the art. However, there are some applications where electromechanical valve actuation systems are at advantage against common pilot operation systems. In this contribution it is analyzed in which cases the application of electro-mechanical actuators can be of advantage and why displacement-controlled systems may be one of these applications. A novel electromechanical valve actuation system for large sized 4/3-way directional control valves for the use in displacement-controlled systems is presented. This new actuation system is characterized by a hydraulic relief of the centering springs. Therefore, the springs are only active in safety-critical conditions, such as a power outage. Since the actuator is not working against the spring force during every displacement, the necessary actuation force is reduced drastically. Thus, common electromechanical actuators can be used. In case of a power outage, the spring relief is deactivated causing the stored energy to center the spool in its neutral position. The performance of the novel actuation system is examined through measurements conducted on a manufactured demonstrator for valves of nominal size 25 with a flow rate of up to 600 l/min.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6984
Author(s):  
Grzegorz Mieczkowski ◽  
Dariusz Szpica ◽  
Andrzej Borawski ◽  
Saulius Diliunas ◽  
Tilmute Pilkaite ◽  
...  

This paper presents the results of research related to the selection of materials for passive and active components of a three-layer piezoelectric cantilever converter. The transducer is intended for use in a low-pressure gas-phase injector executive system. To ensure the functionality of the injector, its flow characteristics and the effective range of valve opening had to be determined. Therefore, a spatial model of the complete injector was developed, and the necessary flow analyses were performed using computational fluid dynamics (CFD) in Ansys Fluent environment. The opening and closing of the injector valve are controlled by a piezoelectric transducer. Thus, its static electromechanical characteristics were found in analytical form. On this basis, the energy demand of the converter, required to obtain the desired valve opening, was determined. Assuming a constant transducer geometry, 40 variants of material combinations were considered. In the performed analyses, it was assumed that the passive elements of the actuator are made of typical materials used in micro-electromechanical systems (MEMSs) (copper, nickel, silicon alloys and aluminum alloys). As for the active components of the converter, it was assumed that they could be made of polymeric or ceramic piezoelectric materials. On the basis of the performed tests, it was found that the energy demand is most influenced by the relative stiffness of the transducer materials (Young’s modulus ratio) and the piezoelectric constant of the active component (d31). Moreover, it was found that among the tested material combinations, the transducer made of silicon oxide and PTZ5H (soft piezoelectric ceramics) had the lowest energy consumption.


Author(s):  
Sreedhar Babu G ◽  
Sekhar A.S. ◽  
Lingamurthy. A

The paper presents diagnostics methodology that can identify the event of occurrence of fault in the actuator or the linkage system of the flight control actuation system driven by Linear Electromechanical Actuators (LEMA). The standard data analysis like motor current signature analysis (MCSA) is good at identifying the incipient faults within the elements of the actuators in situations where-in the actuators are driving control surfaces. But in back driven cases, where-in LEMA is driven back by control surfaces, the faults outside the LEMAs are difficult to be detected due to higher mechanical advantages of transmission elements like roller screws, gear train and linkage arms scaling down their effects before reaching the motor. One such event occurred in a ground test, wherein the jet vanes were sheared when back driven by excessive gas dynamic forces. Neither the motor current nor the LEMA position feedback data has any clue of the instance of occurrence of such shearing. The case study is discussed in detail and diagnostics solution for such failures is proposed. A new methodology to pin point the event of occurrence is arrived at based on ground static test data of four independent channels. The same is reassured for its applicability using lab experiments on three samples mimicking the failure. The method's applicability is also extended for extracting events in actual flight, by comparing the flight telemetry data with the mimicked lab level (dry runs) data. The methodology uses the analysis of LEMA motor current data to arrive at the vital diagnostic information. The current data of LEMA directly cannot be interpreted due to non-stationary nature arising from variable speed and its pulsating form because of the pulse width modulation (PWM) switching, threshold voltages and closed loop dynamics of the servo. Hence the motor current is integrated using cumulative trapezoidal method. This integrated data is spline curve fitted to arrive at residuals vector. The Hadamard product is used on the residuals vector to amplify the information and suppress the noise. Further, normalizing is done to compare data across tests and samples. With this, necessary diagnostic information was extracted from static test data. The method is extended for extracting diagnostics information from actual flight using comparison analysis of, the test data in actual environment with mimicked lab level dry runs. It is also verified for applicability in faults directly driven by actuators in lab level experiments on three samples.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012068
Author(s):  
Qiang Yue ◽  
Hao Qian

Abstract As the braking device of the aircraft electromechanical actuation system, the brake is a vital link in the aircraft attitude change or function adjustment. Among them, the permanent magnet brake has attracted extensive attention in the field of aerospace technology because of its advantages of low energy consumption and high reliability. At present, the domestic permanent magnet brake is heavy and the braking torque density is generally low, which limits its further development in the field of aerospace. In order to improve the braking torque density of permanent magnet brake, this paper proposes a research method of high torque density permanent magnet brake is proposed. By establishing the magnetic circuit structure of the permanent magnet brake, the relationship between the external characteristics of the permanent magnet brake and the design parameters is determined, and then the performance parameters of the permanent magnet brake are simulated and verified by using the finite element simulation software. Finally, through the physical test, the results show that this method can effectively improve the braking torque density.


Author(s):  
Javier Dario Leon-García ◽  
Sebastian Imle
Keyword(s):  

El presente artículo está basado en el diseño de un sistema de diagnóstico para el Energize to Trip Actuation System (ETTAS). El proyecto ETTAS propone una alternativa sostenible y segura para accionar válvulas en sistemas de producción submarina sin derramar fluidos hidráulicos contaminantes en el fondo marino. Al ser este un Sistema Distribuido Seguro, sus requerimientos de diseño buscan un Safe Integrity Level 2 (SIL 2), lo cual hizo necesaria la implementación de un sistema de diagnóstico. Éste último es presentado aquí como un concepto para ser aplicado en Sistemas Distribuidos Seguros en general. El método utilizado para el diseño del Concepto del Sistema de Diagnóstico involucra el planteo de requerimientos, la generación de una base de conocimiento, el planteamiento y selección de propuestas y el diseño del concepto final. El concepto resultante es mostrado a través de máquinas de estado y una Arquitectura del Sistema de Diagnóstico. Se concluye que el concepto incrementa las capacidades de diagnóstico en el Sistema Distribuido Seguro ya que es independiente del tiempo para cambiar sus estados, minimiza la cantidad de funcionalidades y se aprovecha de la memoria paralelamente compartida para ser implementable para diagnosticar distintos componentes en el sistema.


Sign in / Sign up

Export Citation Format

Share Document