Decentralized autonomous planning of cluster reconfiguration for fractionated spacecraft

2016 ◽  
Vol 123 ◽  
pp. 397-408 ◽  
Author(s):  
Jing Chu ◽  
Jian Guo ◽  
Eberhard Gill
2014 ◽  
Vol 1016 ◽  
pp. 649-654
Author(s):  
Ya Feng Niu ◽  
Yong Ming Gao

This paper discusses the cooperative control for formation keeping of fractionated spacecraft, which is a new concept in recent years. For system of second-order differential equations of formation flying dynamics, knowledge of graph and consensus theory is introduced in study. By means of the idea of sliding mode control, we design a tracking control law for time-varying desired signal. Via exchanging error information among modules, the control law can make errors synchronized up to zero to achieve tracking. Relative velocity information between modules is not needed in this control law, which will efficiently reduce the requirements for relative navigation between modules. Then we prove the stability of the control system. Finally numerical simulation results show the effectiveness of the control law. By configuring the control parameters reasonably, we can achieve high degree of control accuracy.


2018 ◽  
Vol 35 (3) ◽  
pp. 503-521 ◽  
Author(s):  
Mar M. Flexas ◽  
Martina I. Troesch ◽  
Steve Chien ◽  
Andrew F. Thompson ◽  
Selina Chu ◽  
...  

ABSTRACTSubmesoscale fronts arising from mesoscale stirring are ubiquitous in the ocean and have a strong impact on upper-ocean dynamics. This work presents a method for optimizing the sampling of ocean fronts with autonomous vehicles at meso- and submesoscales, based on a combination of numerical forecast and autonomous planning. This method uses a 48-h forecast from a real-time high-resolution data-assimilative primitive equation ocean model, feature detection techniques, and a planner that controls the observing platform. The method is tested in Monterey Bay, off the coast of California, during a 9-day experiment focused on sampling subsurface thermohaline-compensated structures using a Seaglider as the ocean observing platform. Based on model estimations, the sampling “gain,” defined as the magnitude of isopycnal tracer variability sampled, is 50% larger in the feature-chasing case with respect to a non-feature-tracking scenario. The ability of the model to reproduce, in space and time, thermohaline submesoscale features is evaluated by quantitatively comparing the model and glider results. The model reproduces the vertical (~50–200 m thick) and lateral (~5–20 km) scales of subsurface subducting fronts and near-bottom features observed in the glider data. The differences between model and glider data are, in part, attributed to the selected glider optimal interpolation parameters and to uncertainties in the forecasting of the location of the structures. This method can be exported to any place in the ocean where high-resolution data-assimilative model output is available, and it allows for the incorporation of multiple observing platforms.


Sign in / Sign up

Export Citation Format

Share Document