Experimental investigation of the effect of nozzle throat diameter on the performance of a hybrid rocket motor with swirling injection of high-concentration hydrogen peroxide

2019 ◽  
Vol 164 ◽  
pp. 334-344 ◽  
Author(s):  
S.S. Wei ◽  
M.C. Lee ◽  
Y.H. Chien ◽  
T.H. Chou ◽  
J.S. Wu
Aerospace ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 45 ◽  
Author(s):  
Kamps ◽  
Sakurai ◽  
Saito ◽  
Nagata

Static firing tests of a hybrid rocket motor using liquid nitrous oxide (N2O) as the oxidizer and high-density polyethylene (HPDE) as the fuel are analyzed using a novel approach to data reduction that allows histories for fuel mass consumption, nozzle throat erosion, characteristic exhaust velocity (c*) efficiency, and nozzle throat wall temperature to be determined experimentally. This is done by firing a motor under the same conditions six times, varying only the burn time. Results show that fuel mass consumption was nearly perfectly repeatable, whereas the magnitude and timing of nozzle throat erosion was not. Correlations of the fuel regression rate result in oxidizer port mass flux exponents of 0.62 and 0.76. There is a transient time in the c* efficiency histories of around 2.5 s, after which c* efficiency remains relatively constant, even in the case of excessive nozzle throat erosion. Although nozzle erosion was not repeatable, the erosion onset factors were similar between tests, and greater than values in previous research in which oxygen was used as the oxidizer. Lastly, nozzle erosion rates exceed 0.15 mm/s for chamber pressures of 4 to 5 MPa.


Author(s):  
Tong Liang ◽  
Guobiao Cai ◽  
Jiangning Wang ◽  
Xiaoming Gu ◽  
Liang Zhuo ◽  
...  

Author(s):  
Alessandro Ruffin ◽  
Enrico Paccagnella ◽  
Marco Santi ◽  
Francesco Barato ◽  
Daniele Pavarin

Sign in / Sign up

Export Citation Format

Share Document