nozzle throat
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 22)

H-INDEX

12
(FIVE YEARS 2)

Aerospace ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 369
Author(s):  
Bernhard Semlitsch ◽  
Mihai Mihăescu

The ability to manipulate shock patterns in a supersonic nozzle flow with fluidic injection is investigated numerically using Large Eddy Simulations. Various injector configurations in the proximity of the nozzle throat are screened for numerous injection pressures. We demonstrate that fluidic injection can split the original, single shock pattern into two weaker shock patterns. For intermediate injection pressures, a permanent shock structure in the exhaust can be avoided. The nozzle flow can be manipulated beneficially to increase thrust or match the static pressure at the discharge. The shock pattern evolution of injected stream is described over various pressure ratios. We find that the penetration depth into the supersonic crossflow is deeper with subsonic injection. The tight arrangement of the injectors can provoke additional counter-rotating vortex pairs in between the injection.


2021 ◽  
Author(s):  
Clayton Edward Wozney

The thrust profiles of solid rocket motors are usually determined ahead of time by propellant composition and grain design. Traditional techniques for active thrust modulation use a moveable pintle to dynamically change the nozzle throat diameter, increasing the chamber pressure and therefore thrust. With this approach, high chamber pressures must be endured with only modest increases in thrust. Alternatively, it has been shown that spinning a solid rocket motor on its longitudinal axis can increase the burning rate of the propellant and therefore the thrust without the resulting high chamber pressures. Building on prior experience modelling pressure-dependent, low-dependent and acceleration-dependent burning in solid rocket motors, an internal ballistic simulation computer program is modified for the present study where the use of the pintle nozzle and spin-augmented solid rocket motor combustion approaches, for a reference cylindrical-grain motor, are compared. This study confirms that comparable thrust augmentation can be gained at lower chamber pressures using the novel spin-acceleration approach, relative to the established pintle-nozzle approach, thus potentially providing a significant design advantage.


2021 ◽  
Author(s):  
Clayton Edward Wozney

The thrust profiles of solid rocket motors are usually determined ahead of time by propellant composition and grain design. Traditional techniques for active thrust modulation use a moveable pintle to dynamically change the nozzle throat diameter, increasing the chamber pressure and therefore thrust. With this approach, high chamber pressures must be endured with only modest increases in thrust. Alternatively, it has been shown that spinning a solid rocket motor on its longitudinal axis can increase the burning rate of the propellant and therefore the thrust without the resulting high chamber pressures. Building on prior experience modelling pressure-dependent, low-dependent and acceleration-dependent burning in solid rocket motors, an internal ballistic simulation computer program is modified for the present study where the use of the pintle nozzle and spin-augmented solid rocket motor combustion approaches, for a reference cylindrical-grain motor, are compared. This study confirms that comparable thrust augmentation can be gained at lower chamber pressures using the novel spin-acceleration approach, relative to the established pintle-nozzle approach, thus potentially providing a significant design advantage.


Author(s):  
Gantayata Gouda ◽  
Balaji Sankar ◽  
Venkat Iyengar ◽  
Jana Soumendu

Modifications to the critical parameters, such as the exhaust nozzle area, are sometimes done during maintenance of aircraft engines. These modifications are done either to increase the design thrust or to compensate for the reduction of thrust due to leakage in the variable area jet nozzle. There is a trade-off between several performance parameters when such critical parameters are changed during maintenance. A tuned aerothermodynamic simulation model that agrees well with the experimental data from the original engine is required to study the effect of these changes. In the present work, a multipoint map scaling approach and a parameter estimation method are used to develop a simulation model that agrees well with the experimental data from the original turbojet engine. The design modifications are then incorporated in the model, and the effect of the modification on the various performance parameters is studied. The effect of leakage in the nozzle flaps and the corresponding reduction required in the nozzle throat area are calculated. It is shown that the tuned model developed with experimental testbed data enables the identification of ancillary effects of a change in a design parameter, such as the nozzle throat area.


Sign in / Sign up

Export Citation Format

Share Document