Using plant functional traits as a link between land use and bee foraging abundance

2013 ◽  
Vol 50 ◽  
pp. 32-39 ◽  
Author(s):  
R.J. Pakeman ◽  
J. Stockan
1999 ◽  
Vol 10 (5) ◽  
pp. 651-660 ◽  
Author(s):  
Sandra Díaz ◽  
Marcelo Cabido ◽  
Marcelo Zak ◽  
Eduardo Martínez Carretero ◽  
Julieta Araníbar

2017 ◽  
Vol 599-600 ◽  
pp. 750-759 ◽  
Author(s):  
Veronika Fontana ◽  
Marina Kohler ◽  
Georg Niedrist ◽  
Michael Bahn ◽  
Ulrike Tappeiner ◽  
...  

2021 ◽  
Vol 193 (S1) ◽  
Author(s):  
Miguel A. Cebrián-Piqueras ◽  
Juliane Trinogga ◽  
Anastasia Trenkamp ◽  
Vanessa Minden ◽  
Martin Maier ◽  
...  

AbstractRecent empirical and theoretical approaches have called for an understanding of the processes underpinning ecosystem service provision. Environmental gradients have shown effects on key plant functional traits that subsequently explain ecosystem properties of several systems. However, little is known concerning how associations between plant functional traits, including both below- and aboveground plant components, predict ecosystem properties and independently measured final ecosystem services. Here, we modeled (1) the responses of the leaf and plant economics spectrum, Plant size axis, and root growth to environmental gradients and (2) how associations between plant functional traits explain trade-offs and synergies between multiple ecosystem properties and final services. Forty-four plots were studied in a coastal marsh landscape of the German North Sea Coast. We used a partial least square structural equation model approach to test the hypothesized model. We found (1) a negative covariation between plant traits pertaining to a size axis and traits explaining both plant growth (roots and stems) and the leaf economics spectrum; (2) this trade-off responded significantly to the land use gradient and nutrient availability, which were both strongly driven by the groundwater gradient; (3) this trade-off explained an initial major trade-off between carbon stocks, at one extreme of the axis, and both the habitat value to conserve endangered plants and forage production for meat and dairy products at the other extreme. However, a secondary trade-off between nature conservation value and forage production, explained by a trade-off between leaf economics spectrum and plant growth in response to the land use intensity gradient, was also found.


Author(s):  
Ruiyu Fu ◽  
Zhonghua Zhang ◽  
Cong Hu ◽  
Xingbing Peng ◽  
Shaonuan Lu ◽  
...  

2021 ◽  
Author(s):  
Qifang He ◽  
Kai Jiang ◽  
Weicheng Hou ◽  
Yang Zhao ◽  
Xinhang Sun ◽  
...  

Oecologia ◽  
2021 ◽  
Author(s):  
Jörg Bendix ◽  
Nicolay Aguire ◽  
Erwin Beck ◽  
Achim Bräuning ◽  
Roland Brandl ◽  
...  

AbstractTropical mountain ecosystems are threatened by climate and land-use changes. Their diversity and complexity make projections how they respond to environmental changes challenging. A suitable way are trait-based approaches, by distinguishing between response traits that determine the resistance of species to environmental changes and effect traits that are relevant for species' interactions, biotic processes, and ecosystem functions. The combination of those approaches with land surface models (LSM) linking the functional community composition to ecosystem functions provides new ways to project the response of ecosystems to environmental changes. With the interdisciplinary project RESPECT, we propose a research framework that uses a trait-based response-effect-framework (REF) to quantify relationships between abiotic conditions, the diversity of functional traits in communities, and associated biotic processes, informing a biodiversity-LSM. We apply the framework to a megadiverse tropical mountain forest. We use a plot design along an elevation and a land-use gradient to collect data on abiotic drivers, functional traits, and biotic processes. We integrate these data to build the biodiversity-LSM and illustrate how to test the model. REF results show that aboveground biomass production is not directly related to changing climatic conditions, but indirectly through associated changes in functional traits. Herbivory is directly related to changing abiotic conditions. The biodiversity-LSM informed by local functional trait and soil data improved the simulation of biomass production substantially. We conclude that local data, also derived from previous projects (platform Ecuador), are key elements of the research framework. We specify essential datasets to apply this framework to other mountain ecosystems.


Sign in / Sign up

Export Citation Format

Share Document