species coexistence
Recently Published Documents


TOTAL DOCUMENTS

671
(FIVE YEARS 246)

H-INDEX

64
(FIVE YEARS 8)

2022 ◽  
Vol 506 ◽  
pp. 119967
Author(s):  
Mariem Ben-Said ◽  
Juan Carlos Linares ◽  
José Antonio Carreira ◽  
Lahcen Taïqui

2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Dario Caminha-Paiva ◽  
◽  
Vanessa M. Gomes ◽  
Jessica Cunha-Blum ◽  
Michel J. P. Alves ◽  
...  

The increase in rates of habitat loss requires an understanding of how biodiversity is distributed. Campo rupestre is an old, climatically buffered, and infertile landscape located in Brazil. Considered a biodiversity hotspot, the campo rupestre is mainly threatened by mining activity that requires a large operating area. Campo rupestre is known for its restricted distribution area and high abiotic heterogeneity, which modulates species coexistence and richness. To recognise the association between habitat type and plant communities, we propose to describe the floristic composition of herbaceous and shrub components in four habitats of the campo rupestre comprising quartzite and ferruginous substrate. We classified habitat types by the main surface soil features. In each habitat, we sampled ten 100-m2 plots to access information on the shrub and ten 1-m2 plots for the herbaceous component. Altogether we sampled 153 species, belonging to 38 families. The cluster analysis ordered by Sorensen metric indicates a clear distinction of species composition in the shrub component in the four habitats. However, the floristic composition of the herbaceous component was similar between the four habitats but showed a distinction when contrasting with the substrate type. Our results highlight the local taxonomic distinction between habitat types and substrates, indicating that the ecological distinction among substrate types of the campo rupestre cannot be overlooked in conservation and restoration actions.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1746
Author(s):  
Elisabet Martínez-Sancho ◽  
Emilia Gutiérrez ◽  
Cristina Valeriano ◽  
Montse Ribas ◽  
Margarita I. Popkova ◽  
...  

Temperature and precipitation variability throughout the year control the intra-annual dynamics of tree-ring formation. Physiological adaptation of trees to climate change is among the key issues to better understand and predict future forest performance and composition. In this study, we investigated the species’ coexistence and performance of Scots pine and pubescent oak growing in a mixed sub-Mediterranean forest in the northeast of the Iberian Peninsula. We assessed intra-annual cumulative growth patterns derived from band dendrometers during four consecutive growing seasons and long-term changes in basal area increment for the period 1950–2014. Our results revealed that Scots pine followed an intra-annual bimodal growth pattern. Scots pine growth was mainly limited by water availability at intra-annual, interannual and decadal time scales, which resulted in a negative long-term growth trend. Conversely, oak displayed a unimodal growth pattern, which was less climatically constrained. A significant increase in basal area of oak denotes an overall better potential acclimation to prevailing climatic conditions at the expenses of a higher risk of physiological failure during extreme climate events.


2021 ◽  
Author(s):  
David Garcia-Callejas ◽  
Oscar Godoy ◽  
Lisa Buche ◽  
Maria Hurtado ◽  
Jose B. Lanuza ◽  
...  

Theory posits that the persistence of species in ecological communities is shaped by their interactions within and across trophic levels. However, we lack empirical evaluations of how the structure, strength and sign of these interactions drive the potential to coexist in diverse multi-trophic communities. Here we model community feasibility domains, a theoretically-informed measure of coexistence probability, from empirical data on communities comprising more than 50 species for three trophic guilds (plants, pollinators, and herbivores). Although feasibility domains vary depending on the number of trophic guilds considered, we show that higher network connectance leads to lower coexistence opportunities. Moreover, empirical estimations of the feasibility domains were higher with respect to random network structures but lower than a mean-field approach, suggesting that observed interaction structures tend to maximize coexistence within its imposed limits. Our results stress the importance of incorporating empirically-informed interaction structures within and across guilds to better understand how species coexist in diverse multi-trophic communities.


2021 ◽  
Author(s):  
Ana Julia Pereira ◽  
Maité Masciocchi ◽  
Juan Carlos Corley

Abstract In Patagonia (Argentina) two non-native vespid wasps became established in the last decades. Vespula germanica was first detected in 1980 while V. vulgaris arrived some 30 years later. Both species can have a strong negative impact on agriculture, natural environment and on outdoor human activities. Invasion success -the establishment and spread of a species- may be influenced negatively by the degree of interaction with the resident native community, and alien species already present. The sequential arrival of these two wasps allows us to understand key questions of invasion ecology. Additionally, recognizing the outcome of the invasion by vespids in Patagonia -a region lacking native social wasps-, may help plan species-focused mitigation and control strategies. We explored long term species coexistence through the deterministic Lotka-Volterra competition model, using site-specific field data on prey captured (to estimate niche overlap) and current nest densities in sites. Food items carried by workers were similar but there is some degree of segregation. V. germanica nest density in shared sites, and in sites without coexistence, were 3.14 and 3.5 respectively, being higher for V. vulgaris with 4.71 and 5.33. The model predicts stable co-existence of both species in the invaded range, yet a higher abundance of V. vulgaris should be expected. Added to evidence on other foraging behavioral attributes of both wasp species and the invasion patterns observed in other regions, it is likely that the prior presence of V. germanica does not contribute significantly to the biotic resistance of the invaded range for V. vulgaris


2021 ◽  
Author(s):  
Xiaowen Fan ◽  
Yongkang Deng ◽  
Xiaoyu Ge ◽  
Ke Dong ◽  
Lei Chen ◽  
...  

Abstract Purpose: Grass-endophyte and legume-rhizobium symbionts coexist in grasslands. However, the effects of endophyte infection on legume-rhizobium symbionts remain poorly understood, especially in natural grasslands. Methods: In this study, Achnatherum sibiricum - Epichloë endophytes and Medicago ruthenica -rhizobia were selected as materials to investigate whether and how endophyte infection affected the growth of legume-rhizobia symbionts. It was hypothesized that endophytes can facilitate the coexistence of grass-legume systems. Results: The results demonstrated that endophyte infection affected the growth of both rhizobia and M. ruthenica -rhizobia symbionts, and the results depended on rhizobial identity. Endophyte infection inhibited the growth of Mesorhizobium ciceri , which significantly promoted the growth of M. ruthenica , and promoted Sinorhizobium meliloti , which had no significant effect on the growth of M. ruthenica . Endophyte infection also changed the interaction between A. sibiricum and M. ruthenica . When inoculated with M. ciceri , endophyte infection weakened the promoting effect of A. sibiricum on M. ruthenica , while when inoculated with S. meliloti , endophyte infection enhanced the promoting effect. Endophyte infection affected the growth of M. ruthenica -rhizobia symbionts by affecting rhizobia abundance in roots and nitrogen content in plant leaves. Conclusion: In conclusion, endophyte infection was beneficial to biomass accumulation and species coexistence in grass-legume mixed planting systems. In this study, it was proposed that endophyte infection may change the growth of legume-rhizobia symbionts by affecting the growth and nitrogen fixation of rhizobia.


Author(s):  
Hui Shang ◽  
Yunquan Wang ◽  
Baocai Han ◽  
Franca Bongers ◽  
Xiang-Cheng Mi ◽  
...  

Negative density dependence (NDD) has been accepted as a key mechanism for biodiversity maintenance in natural forests and different lineages of natural enemies (fungus, bacterium, insect and virus) may be involved. Previous NDD related studies usually correlated seedling survival to the density of host-specific pests or pathogens along the distance to conspecific neighbors, and molecular defense responses of focal seedlings to natural enemies were seldomly concerned. By employing community functional genomics strategy, we extracted copy numbers of homologous genes in defense responses from transcriptomic data of 99 tree species and their inherent impacts on seedling survival were evaluated using partial linear regression analysis and general linear mixed-effects models. The community-level transcriptomic gene copy number of defense responses to fungus, insect and virus showed significant negative correlations with survival rates of the seedling community and the species-level gene copy number of defense response to insect significantly correlated with survival rates of top-twenty common seedling species. Moreover, presence of adult neighbors with distinct defense response to bacterial and viral pathogens survival of focal seedlings as predicted by NDD, while presence of seedling neighbors with similar defense response to insect tended to promote survival of focal seedlings which may be driven by insect-mediated biotic filtering or competitive exclusion. We conclude that both gene copy number and dissimilarities to adult and seedling neighbors in defense response to natural enemies determined seedling survival, indicating the critical contributions of molecular defense responses of plants to species coexistence and diversity maintenance in subtropical forests.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Li Xie ◽  
Wenying Shou

AbstractMicrobial communities often perform important functions that depend on inter-species interactions. To improve community function via artificial selection, one can repeatedly grow many communities to allow mutations to arise, and “reproduce” the highest-functioning communities by partitioning each into multiple offspring communities for the next cycle. Since improvement is often unimpressive in experiments, we study how to design effective selection strategies in silico. Specifically, we simulate community selection to improve a function that requires two species. With a “community function landscape”, we visualize how community function depends on species and genotype compositions. Due to ecological interactions that promote species coexistence, the evolutionary trajectory of communities is restricted to a path on the landscape. This restriction can generate counter-intuitive evolutionary dynamics, prevent the attainment of maximal function, and importantly, hinder selection by trapping communities in locations of low community function heritability. We devise experimentally-implementable manipulations to shift the path to higher heritability, which speeds up community function improvement even when landscapes are high dimensional or unknown. Video walkthroughs: https://go.nature.com/3GWwS6j; https://online.kitp.ucsb.edu/online/ecoevo21/shou2/.


Sign in / Sign up

Export Citation Format

Share Document