Biomechanical behavior of cavity design on teeth restored using ceramic inlays: An approach based on three-dimensional finite element analysis and ultrahigh-speed camera

2019 ◽  
Vol 89 ◽  
pp. 382-390 ◽  
Author(s):  
Chun-Wen Cheng ◽  
Weng-Pin Chen ◽  
Yu-Ting Chien ◽  
Yu-Ting Teng ◽  
Pei-Ying Lu ◽  
...  
2019 ◽  
pp. 0000-0000 ◽  
Author(s):  
Karina Albino Lencioni ◽  
Pedro Yoshito Noritomi ◽  
Ana Paula Macedo ◽  
Ricardo Faria Ribeiro ◽  
Rossana Pereira Almeida

This study analyzed the biomechanical behavior of rigid and non-rigid tooth-implant supported fixed partial dentures. Different implants were used in order to observe the load distribution over teeth, implants, and adjacent bone using three-dimensional finite element analysis. A simulation of tooth loss of the first and second right molars was created with an implant placed in the second right molar and a prepared tooth with simulated periodontal ligament (PDL) in the second right premolar. Configurations of two types of implants and their respective abutments, i.e., external hexagon (EX) and Morse taper (MT), were transformed into a 3D format. Metal-ceramic fixed partial dentures were constructed with rigid and non-rigid connections. Mesh generation and data processing were performed on the 3D FEA results. Static loading of 50 N (premolar) and 100 N (implant) were applied. When an EX implant was used, with a rigid or non-rigid connection, there was intrusion of the tooth in the distal direction with flexion of the periodontal ligament. Tooth intrusion did not occur when the MT implant was used independent of a rigid or non-rigid connection. The rigid or non-rigid connection resulted in a higher incidence of compressive forces at the cortical bone and stress in the abutment/pontic area, regardless of whether EX or MT implants were used. MT implants have a superior biomechanical performance in tooth-implant supported fixed partial dentures. This prevents the intrusion of the tooth independent of the connection. Both types of implants that were studied caused a greater tendency of compressive forces at the crestal area.


2015 ◽  
Vol 41 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Gianpaolo Sannino

The aim of this work was to study the biomechanical behavior of an All-on-4 implant-supported prosthesis through a finite element analysis comparing 3 different tilt degrees of the distal implants. Three-dimensional finite element models of an edentulous maxilla restored with a prosthesis supported by 4 implants were reconstructed to carry out the analysis. Three distinct configurations, corresponding to 3 tilt degrees of the distal implants (15°, 30°, and 45°) were subjected to 4 loading simulations. The von Mises stresses generated around the implants were localized and quantified for comparison. Negligible differences in von Mises stress values were found in the comparison of the 15° and 30° models. From a stress-level viewpoint, the 45° model was revealed to be the most critical for peri-implant bone. In all the loading simulations, the maximum stress values were always found at the neck of the distal implants. The stress in the distal implants increased in the apical direction as the tilt degree increased. The stress location and distribution patterns were very similar among the evaluated models. The increase in the tilt degree of the distal implants was proportional to the increase in stress concentration. The 45° model induced higher stress values at the bone-implant interface, especially in the distal aspect, than the other 2 models analyzed.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Sign in / Sign up

Export Citation Format

Share Document