scholarly journals A numerical study on the influence of curvature ratio and vegetation density on a partially vegetated U-bend channel flow

2021 ◽  
Vol 148 ◽  
pp. 103843
Author(s):  
Mingyang Wang ◽  
Eldad Avital ◽  
Theodosios Korakianitis ◽  
John Williams ◽  
Kaiming Ai
Author(s):  
K. Qu ◽  
G. Y. Lan ◽  
S. Kraatz ◽  
W. Y. Sun ◽  
B. Deng ◽  
...  

The extreme surges and waves generated in tsunamis can cause devastating damages to coastal infrastructures and threaten the intactness of coastal communities. After the 2004 Indian Ocean tsunami, extensive physical experiments and numerical simulations have been conducted to understand the wave attenuation of tsunami waves due to coastal forests. Nearly all prior works used solitary waves as the tsunami wave model, but the spatial-temporal scales of realistic tsunamis differ drastically from that of solitary waves in both wave period and wavelength. More recent work has questioned the applicability of solitary waves and been looking towards more realistic tsunami wave models. Therefore, aiming to achieve more realistic and accurate results, this study will use a parameterized tsunami-like wave based on wave observations during the 2011 Japan tsunami to study the wave attenuation of a tsunami wave by emergent rigid vegetation. This study uses a high-resolution numerical wave tank based on the non-hydrostatic wave model (NHWAVE). This work examines effects of prominent factors, such as wave height, water depth, vegetation density and width, on the wave attenuation efficiency of emergent rigid vegetation. Results indicate that the vegetation patch can dissipate a considerable amount of the total wave energy of the tsunami-like wave. However, the tsunami-like wave has a higher total wave energy, but also a lower wave energy dissipation rate. Results show that using a solitary instead of a tsunami-like wave profile can overestimate the wave attenuation efficiency of the coastal forest.


2022 ◽  
Vol 10 (1) ◽  
pp. 62
Author(s):  
Chao Ning ◽  
Yalin Li ◽  
Ping Huang ◽  
Hongbo Shi ◽  
Haichao Sun

Centrifugal pumps are the critical components in deep-sea mining. In order to investigate the particle motion in the curved channel of the impeller, three different types of curvature conform to blade profile to simplify the impeller design of pumps. A numerical study is conducted to investigate the flow field in a varying-curvature channel for solid-liquid two-phase flow. The flow of particles within the varying curvature channel is studied by combining the discrete element method (DEM) with computational fluid dynamics (CFD) and a comparison with Particle Image Velocimetry (PIV) test results. The results show that a polyhedral mesh with a small mesh number yields very accurate results, which makes it very suitable for CFD-DEM. Based on this method, the movement of a single particle is compared and analyzed, and the particle-motion law is obtained. The effects of the curvature ratio Cr and area ratio Ar on the motion law for a single particle are studied, and the simulation results are analyzed statistically. The results show that the effect of Cr on both the particle slip velocity and the turbulent kinetic energy only changes its strength, while the distribution law does not change significantly. Compared with the curvature ratio Cr, the area ratio Ar has a greater impact on the particles, and its distribution law becomes clearly different. As the area ratio Ar increases, the arc radius and length of the corresponding particle trajectory decrease.


2015 ◽  
Vol 22 (5) ◽  
pp. 2779-2785 ◽  
Author(s):  
Philippe Traore ◽  
Jian Wu ◽  
Christophe Louste ◽  
Pedro A. Vazquez ◽  
Alberto T. Perez

Author(s):  
Z. Wu ◽  
J. B. Young

This paper deals with particle deposition onto solid walls from turbulent flows. The aim of the study is to model particle deposition in industrial flows, such as the one in gas turbines. The numerical study has been carried out with a two fluid approach. The possible contribution to the deposition from Brownian diffusion, turbulent diffusion and shear-induced lift force are considered in the study. Three types of turbulent two-phase flows have been studied: turbulent channel flow, turbulent flow in a bent duct and turbulent flow in a turbine blade cascade. In the turbulent channel flow case, the numerical results from a two-dimensional code show good agreement with numerical and experimental results from other resources. Deposition problem in a bent duct flow is introduced to study the effect of curvature. Finally, the deposition of small particles on a cascade of turbine blades is simulated. The results show that the current two fluid models are capable of predicting particle deposition rates in complex industrial flows.


Sign in / Sign up

Export Citation Format

Share Document