scholarly journals Heat transfer analysis of boundary layer flow over hyperbolic stretching cylinder

2016 ◽  
Vol 55 (2) ◽  
pp. 1333-1339 ◽  
Author(s):  
Abid Majeed ◽  
Tariq Javed ◽  
Irfan Mustafa
2013 ◽  
Vol 18 (2) ◽  
pp. 447-459 ◽  
Author(s):  
S. Mukhopadhyay ◽  
R.S.R Gorla

An axi-symmetric laminar boundary layer flow of a viscous incompressible fluid and heat transfer towards a stretching cylinder is presented. Velocity slip is considered instead of the no-slip condition at the boundary. Similarity transformations are used to convert the partial differential equations corresponding to the momentum and heat equations into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by the shooting method. It is found that the velocity decreases with increasing the slip parameter. The skin friction as well as the heat transfer rate at the surface is larger for a cylinder compared to those for a flat plate.


2016 ◽  
Vol 20 (6) ◽  
pp. 1913-1925 ◽  
Author(s):  
Iftikhar Ahmad ◽  
Manzoor Ahmad ◽  
Muhammad Sajid

In this article unsteady three dimensional MHD boundary layer flow and heat transfer analysis with constant temperature (CT) and constant heat flux (CH) in a porous medium is considered. The boundary layer flow is governed by a bidirectional stretching sheet. Similarity transformations are used to transform the governing non-linear partial differential equations to ordinary differential equations. Analytical solutions are constructed using homotopy analysis method (HAM). Convergence analysis is also presented through tabular data. The quantities of interest are the velocity, temperature, skin friction coefficient and Nusselt number. The obtained results are validated by comparisons with previously published work in special cases. The results of this parametric study are shown graphically and the physical aspects of the problem are discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Swati Mukhopadhyay

This paper presents an axi-symmetric laminar boundary layer flow of a viscous incompressible fluid and heat transfer towards a stretching cylinder embedded in a porous medium. The partial differential equations corresponding to the momentum and heat equations are converted into highly nonlinear ordinary differential equations with the help of similarity transformations. Numerical solutions of these equations are obtained by shooting method. It is found that the velocity decreases with increasing permeability parameter. The skin friction as well as the heat transfer rate at the surface is larger for a cylinder compared to a flat plate.


Sign in / Sign up

Export Citation Format

Share Document