scholarly journals Heat transfer analysis of MHD flow due to unsteady bi-directional stretching sheet through porous space

2016 ◽  
Vol 20 (6) ◽  
pp. 1913-1925 ◽  
Author(s):  
Iftikhar Ahmad ◽  
Manzoor Ahmad ◽  
Muhammad Sajid

In this article unsteady three dimensional MHD boundary layer flow and heat transfer analysis with constant temperature (CT) and constant heat flux (CH) in a porous medium is considered. The boundary layer flow is governed by a bidirectional stretching sheet. Similarity transformations are used to transform the governing non-linear partial differential equations to ordinary differential equations. Analytical solutions are constructed using homotopy analysis method (HAM). Convergence analysis is also presented through tabular data. The quantities of interest are the velocity, temperature, skin friction coefficient and Nusselt number. The obtained results are validated by comparisons with previously published work in special cases. The results of this parametric study are shown graphically and the physical aspects of the problem are discussed.

2013 ◽  
Vol 29 (3) ◽  
pp. 559-568 ◽  
Author(s):  
G. C. Shit ◽  
R. Haldar ◽  
A. Sinha

AbstractA non-linear analysis has been made to study the unsteady hydromagnetic boundary layer flow and heat transfer of a micropolar fluid over a stretching sheet embedded in a porous medium. The effects of thermal radiation in the boundary layer flow over a stretching sheet have also been investigated. The system of governing partial differential equations in the boundary layer have reduced to a system of non-linear ordinary differential equations using a suitable similarity transformation. The resulting non-linear coupled ordinary differential equations are solved numerically by using an implicit finite difference scheme. The numerical results concern with the axial velocity, micro-rotation component and temperature profiles as well as local skin-friction coefficient and the rate of heat transfer at the sheet. The study reveals that the unsteady parameter S has an increasing effect on the flow and heat transfer characteristics.


2017 ◽  
Vol 21 (5) ◽  
pp. 2167-2176 ◽  
Author(s):  
Fakhrodin Mohammadi ◽  
Mohamad Rashidi

In this paper, an efficient spectral collocation method based on the shifted Legendre polynomials is applied to study the unsteady boundary-layer flow and heat transfer due to a stretching sheet. A similarity transformation is used to reduce the governing unsteady boundary-layer equations to a system of non-linear ordinary differential equations. Then, the shifted Legendre polynomials and their operational matrix of derivative are used for producing an analytical approximate solution of this system of non-linear ordinary differential equations. The main advantage of the proposed method is that the need for guessing and correcting the initial values during the solution procedure is eliminated and a stable solution with good accuracy can be obtained by using the given boundary conditions in the problem. A very good agreement is observed between the obtained results by the proposed spectral collocation method and those of previously published ones.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 490
Author(s):  
Ahmad Banji Jafar ◽  
Sharidan Shafie ◽  
Imran Ullah

This paper numerically investigates the viscous dissipation effect on the boundary layer flow of an electrically-conducting viscoelastic fluid (Walter’s B liquid) past a nonlinear stretching sheet. The partial differential equations governing the flow problem are transformed into ordinary differential equations through similarity variables. The transformed equations are then solved using the Keller box method. A careful evaluation of the influence of the pertinent parameters on the velocity field and temperature distributions through various plots is done for the prescribed surface temperature (PST) and prescribed heat flux (PHF) boundary conditions. The computed coefficient of skin friction, the rate of heat transfer (Nusselt number), and the temperature at the wall are also presented in tabular form. It is revealed from this table that the magnitude of the heat transfer is reduced with the increase in the Eckert number E c , viscoelastic parameter K, and magnetic parameter M for the PST case by about 12%, 20%, and 29%, respectively. Similarly, the temperature at the wall for the PHF case also decreases with the increase in E c and M by about 8% and 24%, respectively. It is obvious that the application of the PST condition excels at keeping the viscoelastic fluid warmer than the PHF condition. This implies that applying the PHF condition is better for cooling the sheet faster. The temperature at the wall is unchanged with the changes in the pertinent parameters in the PST case, and it is ascertained that the present results are in close agreement with the previous published results.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
S. Shateyi ◽  
G. T. Marewo

The study presents an axisymmetric laminar boundary layer flow of a viscous incompressible fluid and heat transfer over a stretching cylinder embedded in a porous medium. A suitable similarity transformation is employed to transform the partial differential equations corresponding to the momentum and heat equations into nonlinear ordinary differential equations. The resultant ordinary differential equations are then solved using a successive relaxation method (SRM). The effects of significant parameters on the velocity and temperature profiles have been analyzed graphically. The obtained results are also compared with previously published results in some special cases and were found to be in excellent agreement. The skin friction as well as the heat transfer rate at the surface are increased as the values of the curvature parameter increase.


2021 ◽  
Vol 26 (4) ◽  
pp. 548-565
Author(s):  
Feliz Minhós ◽  
Rui Carapinha

In this paper, we improve the existing results in the literature by presenting weaker sufficient conditions for the solvability of a third-order impulsive problem on the half-line, having generalized impulse effects. More precisely, our nonlinearities do not need to be positive nor sublinear and the monotone assumptions are local ones. Our method makes use of some truncation and perturbed techniques and on the equiconvergence at infinity and the impulsive points. The last section contains an application to a boundary layer flow problem over a stretching sheet with and without heat transfer.


2021 ◽  
Vol 10 (2) ◽  
pp. 172-185
Author(s):  
Golbert Aloliga ◽  
Yakubu Ibrahim Seini ◽  
Rabiu Musah

In this current paper, an investigation has been conducted on the magnetohydrodynamic boundary layer flow of non-Newtonian Casson fluids on magnetized sheet with an exponentially stretching sheet. The similarity approach has been used to transform the governing models for Casson fluid to ordinary differential equations. We presented numerical results for momentum, energy and concentration equation parameters. Effects of the magnetized sheet and varying all the emerged parameters on the flow of Casson fluid with respect to the friction between the fluid and the surface, temperature and concentration are presented in tables. As a result of the induced magnetization of the sheet, the thickness of the thermal boundary layer has been enhanced. This behaviour brings a considerable reduction to the heat transfer. The induced magnetized sheet has a similar influence on the skin friction, Nusselt number and the Sherwood number. We however proposed incorporation of magnetized surfaces in MHD flows for controlling the flow rate of the fluid and heat transfer characteristics.


1970 ◽  
Vol 46 (4) ◽  
pp. 451-456 ◽  
Author(s):  
K Bhattacharyya ◽  
MS Uddin ◽  
GC Layek ◽  
W Ali Pk

In this paper, we obtained solutions of boundary layer flow and heat transfer for two classes of viscoelastic fluid over a stretching sheet with internal heat generation or absorption. In the analysis, we consider second-grade fluid and Walter's liquid B. The governing equations are transformed into self-similar ordinary differential equations by similarity transformations. The flow equation relating to momentum is solved analytically and then the heat equation using the Kummer's function. The analysis reveals that for the increase in magnitude of viscoelastic parameter both the velocity and temperature for a fixed point increase for second-grade fluid and both decrease for Walter's liquid B. Due to increase in Prandtl number and heat sink parameter, the thermal boundary layer thickness reduces, whereas increasing heat source parameter increases that thickness. Key words: Boundary layer flow; Heat transfer; Viscoelastic fluid; Stretching sheet; Heat generation or absorption DOI: http://dx.doi.org/10.3329/bjsir.v46i4.9590 BJSIR 2011; 46(4): 451-456


Sign in / Sign up

Export Citation Format

Share Document