Following the dance: Ground survey of flowers and flower-visiting insects in a summer foraging hotspot identified via honey bee waggle dance decoding

2015 ◽  
Vol 213 ◽  
pp. 265-271 ◽  
Author(s):  
Nicholas J. Balfour ◽  
Katherine A. Fensome ◽  
Elizabeth E.W. Samuelson ◽  
Francis L.W. Ratnieks
2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Margaret J. Couvillon ◽  
Chandra M. Walter ◽  
Eluned M. Blows ◽  
Tomer J. Czaczkes ◽  
Karin L. Alton ◽  
...  

We quantified insect visitation rates by counting how many flowers/inflorescences were probed per unit time for five plant species (four native and one garden: California lilac, bramble, ragwort, wild marjoram, and ivy) growing in Sussex, United Kingdom, by following individual insects (n=2987) from nine functional groups (honey bees (Apis mellifera), bumble bees (Bombusspp.), hoverflies, flies, butterflies, beetles, wasps, non-Apidae bees, and moths). Additionally, we made a census of the insect diversity on the studied plant species. Overall we found that insect groups differed greatly in their rate of flower visits (P<2.2e-16), with bumble bees and honey bees visiting significantly more flowers per time (11.5 and 9.2 flowers/minute, resp.) than the other insect groups. Additionally, we report on a within-group difference in the non-Apidae bees, where the genusOsmia, which is often suggested as an alternative to honey bees as a managed pollinator, was very speedy (13.4 flowers/minute) compared to the other non-Apidae bees (4.3 flowers/minute). Our census showed that the plants attracted a range of insects, with the honey bee as the most abundant visitor (34%). Therefore, rate differences cannot be explained by particular specializations. Lastly, we discuss potential implications of our conclusions for pollination.


1998 ◽  
Vol 01 (02n03) ◽  
pp. 267-282 ◽  
Author(s):  
Carl Anderson

Honey bee nectar foragers returning to the hive experience a delay as they search for a receiver bee to whom they transfer their material. In this paper I describe the simulation of the "threshold rule" (Seeley, 1995) which relates the magnitude of this search delay to the probability of performing a recriutment dance — waggle dance, tremble dance, or no dance. Results show that this rule leads to self-organised near-optimal worker allocation in a fluctuating environment, is extremely robust, and operates over a wide range of parameter values. The reason for the robustness appears to be the particular sytem of feedbacks that operate within the system.


Ethology ◽  
2017 ◽  
Vol 123 (12) ◽  
pp. 974-980 ◽  
Author(s):  
Sylwia Łopuch ◽  
Adam Tofilski

Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 762
Author(s):  
Hao Wang ◽  
Zhigang Wu ◽  
Jieliang Zhao ◽  
Jianing Wu

Most flower-visiting insects have evolved highly specialized morphological structures to facilitate nectar feeding. As a typical pollinator, the honey bee has specialized mouth parts comprised of a pair of galeae, a pair of labial palpi, and a glossa, to feed on the nectar by the feeding modes of lapping or sucking. To extensively elucidate the mechanism of a bee’s feeding, we should combine the investigations from glossa morphology, feeding behaviour, and mathematical models. This paper reviews the interdisciplinary research on nectar feeding behaviour of honey bees ranging from morphology, dynamics, and energy-saving strategies, which may not only reveal the mechanism of nectar feeding by honey bees but inspire engineered facilities for microfluidic transport.


2019 ◽  
Vol 28 (15) ◽  
pp. 3602-3611 ◽  
Author(s):  
Fabian Nürnberger ◽  
Alexander Keller ◽  
Stephan Härtel ◽  
Ingolf Steffan‐Dewenter

2011 ◽  
Vol 68 (2) ◽  
pp. 255-259 ◽  
Author(s):  
Annelise de Souza Rosa ◽  
Betina Blochtein ◽  
Diego Kweco Lima

Although canola, (Brassica napus L.), is considered a self-pollinating crop, researchers have indicated that crop productivity increases as a result of honey bee Apis mellifera L. pollination. Given this crop's growing importance in Rio Grande do Sul State, Brazil, this work evaluated the increase in pod and seed productivity with respect to interactions with anthophilous insects and manual pollination tests. The visiting frequency of A. mellifera was correlated with the crop's blooming progression, and productivity comparisons were made between plants visited by insects, manually pollinated plants (geitonogamy and xenogamy) and plants without pollination induction. Pod set and seed production per plant were determined for each treatment. Among the 8,624 recorded flower-visiting insects, Hymenoptera representatives were the most prevalent (92.3%), among which 99.8% were A. mellifera. The correlation between these bees and blooming progression was positive (r = 0.87; p = 0.002). Pollination induction increased seed productivity from 28.4% (autogamy) to 50.4% with insect visitations, as well as to 48.7 (geitonogamy) and to 55.1% (xenogamy) through manual pollination.


Sign in / Sign up

Export Citation Format

Share Document