visual observation
Recently Published Documents


TOTAL DOCUMENTS

1106
(FIVE YEARS 364)

H-INDEX

42
(FIVE YEARS 5)

2022 ◽  
Vol 11 ◽  
pp. 301-308
Author(s):  
Vivek Kumar Thakur ◽  
Raghuvinder S. Vats ◽  
M. P. Prasanna Kumar ◽  
Sanjeev Datana ◽  
Mohit Sharma ◽  
...  

Objectives: Our primary objective was to establish the efficacy of fluoride gel and fluoride varnish in the prevention of white spot lesions (WSLs) development during fixed orthodontic treatment. Materials and Methods: The study sample consisted of 60 adult patients in a prospective split-mouth study design. Interventions, that is, topical fluoride gel and topical fluoride varnish were assigned at the time of bonding to either the right or left halves of the dentition. In all subjects, repeated evaluation of demineralization was done on the facial surfaces of sample teeth in each quadrant. Evaluation using laser fluorescence and by direct visual observation under magnification was carried out at bonding (T0), 3 months (T1), and 6 months (T2). Results: The distribution of mean DIAGNOdent score at T1 (3.14 ± 1.00 vs. 2.81 ± 0.852) and T2 (4.17 ± 1.41 vs. 3.51 ± 1.13) was observed which is significantly higher in the Gel group compared to the Varnish group. In the Gel group, the distribution of mean DIAGNOdent score at T1 (3.14 ± 1.00) and T2 (4.17 ± 1.41) is significantly higher compared to mean DIAGNOdent score at baseline T0 (2.07 ± 0.66). In the Varnish group, the distribution of mean DIAGNOdent score at T1 (2.81 ± 0.852) and T2 (3.51 ± 1.13) is significantly higher compared to the mean DIAGNOdent score at T0 (2.07 ± 0.66). Visual scores also correlated with DIAGNOdent scores. Conclusion: Fluoride varnish is more efficacious than fluoride gel in reducing enamel demineralization. Initial application of fluoride varnish around the orthodontic bracket at bonding appointment can offer significant protection against WSLs.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 393
Author(s):  
Ajay C. Lagashetti ◽  
Sanjay K. Singh ◽  
Laurent Dufossé ◽  
Pratibha Srivastava ◽  
Paras N. Singh

Filamentous fungi synthesize natural products as an ecological function. In this study, an interesting indigenous fungus producing orange pigment exogenously was investigated in detail as it possesses additional attributes along with colouring properties. An interesting fungus was isolated from a dicot plant, Maytenus rothiana. After a detailed study, the fungal isolate turned out to be a species of Gonatophragmium belonging to the family Acrospermaceae. Based on the morphological, cultural, and sequence-based phylogenetic analysis, the identity of this fungus was confirmed as Gonatophragmium triuniae. Although this fungus grows moderately, it produces good amounts of pigment on an agar medium. The fermented crude extract isolated from G. triuniae has shown antioxidant activity with an IC50 value of 0.99 mg/mL and antibacterial activity against Gram-positive bacteria (with MIC of 3.91 μg/mL against Bacillus subtilis, and 15.6 μg/mL and 31.25 μg/mL for Staphylococcus aureus and Micrococcus luteus, respectively). Dyeing of cotton fabric mordanted with FeSO4 using crude pigment was found to be satisfactory based on visual observation, suggesting its possible use in the textile industry. The orange pigment was purified from the crude extract by preparative HP-TLC. In addition, UV-Vis, FTIR, HRMS and NMR (1H NMR, 13C NMR), COSY, and DEPT analyses revealed the orange pigment to be “1,2-dimethoxy-3H-phenoxazin-3-one” (C14H11NO4, m/z 257). To our understanding, the present study is the first comprehensive report on Gonatophragmium triuniae as a potential pigment producer, reporting “1,2-dimethoxy-3H-phenoxazin-3-one” as the main pigment from the crude hexane extract. Moreover, this is the first study reporting antioxidant, antibacterial, and dyeing potential of crude extract of G. triuniae, suggesting possible potential applications of pigments and other bioactive secondary metabolites of the G. triuniae in textile and pharmaceutical industry.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Mohammad Sofiqur Rahman ◽  
Naoko Yoshida ◽  
Hirohito Tsuboi ◽  
James Regun Karmoker ◽  
Nadia Kabir ◽  
...  

AbstractComprehensive data are needed to prevent substandard and falsified (SF) medicines as they pose a major risk to human health. To assess the quality of selected medicines, samples were collected from random private drug outlets of Dhaka North and South City Corporation, Bangladesh. Sample analysis included visual observation of the packaging, authenticity of the samples, legitimacy and registration verification of the manufacturer, physicochemical analysis, and price. Chemical analysis of the samples was performed using a portable Raman spectroscopy and high-performance liquid chromatography according to the pharmacopoeia. Several discrepancies were noted in the visual observation of samples. Among the 189 collected samples of esomeprazole (ESM), cefixime (CFIX), and amoxicillin-clavulanic acid (CVA-AMPC), 21.2% were confirmed to be authentic, 91.3% manufacturers were confirmed legitimate, and 2.1% of all samples were unregistered. Chemical analysis of the samples revealed that 9.5% (95% CI 5.7–14.6) of samples were SFs. Falsified samples and quality variation in the same generic branded samples were both detected by Raman spectroscopic analysis. Overall, sample prices were satisfactory relative to the international reference price. This study documents the availability of poor-quality medicines, demonstrating the need for immediate attention by the national medicine regulatory authority.


Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 37
Author(s):  
Artur J. Martins ◽  
Fátima Cerqueira ◽  
António A. Vicente ◽  
Rosiane L. Cunha ◽  
Lorenzo M. Pastrana ◽  
...  

Novel fat mimetic materials, such as oleogels, are advancing the personalization of healthier food products and can be developed from low molecular weight compounds such as γ oryzanol and β-sitosterol. Following molecular assembly, the formation of a tubular system ensues, which seems to be influenced by elements such as the oleogelators’ concentration and ratio, cooling rates, and storage periods. Sterol-based oleogels were formulated under distinct environmental conditions, and a comprehensive study aimed to assess the effects of the mentioned factors on oleogel formation and stability, through visual observation and by using techniques such as small-angle X-ray scattering, X-ray diffraction, confocal Raman spectroscopy, rheology, and polarized microscopy. The long, rod-like conformations, identified by small-angle X-ray scattering, showed that different cooling rates influence oleogels’ texture. Raman spectra showed that the stabilization time is associated with the interfibrillar aggregation, which occurred differently for 8 and 10 wt%, with a proven relationship between ferulic acid and the tubular formation. This report gives fundamental insight into the critical point of gelation, referring to the time scale of the molecular stabilization. Our results verify that understanding the structuring mechanisms of oleogelation is decisive for the processing and manufacturing of novel foods which integrate oleogels in their structure.


2022 ◽  
Vol 52 (1) ◽  
pp. E13

OBJECTIVE A clear, stable, suitably located vision field is essential for port surgery. A scope is usually held by hand or a fixing device. The former yields fatigue and requires lengthy training, while the latter increases inconvenience because of needing to adjust the scope. Thus, the authors innovated a novel robotic system that can recognize the port and automatically place the scope in an optimized position. In this study, the authors executed a preliminary experiment to test this system’s technical feasibility and accuracy in vitro. METHODS A collaborative robotic (CoBot) system consisting of a mechatronic arm and a 3D camera was developed. With the 3D camera and programmed machine vision, CoBot can search a marker attached to the opening of the surgical port, followed by automatic alignment of the scope’s axis with the port’s longitudinal axis so that optimal illumination and visual observation can be achieved. Three tests were conducted. In test 1, the robot positioned a laser range finder attached to the robot’s arm to align the sheath’s center axis. The laser successfully passing through two holes in the port sheath’s central axis defined successful positioning. Researchers recorded the finder’s readings, demonstrating the actual distance between the finder and the sheath. In test 2, the robot held a high-definition exoscope and relocated it to the setting position. Test 3 was similar to test 2, but a metal holder substituted the robot. Trained neurosurgeons manually adjusted the holder. The manipulation time was recorded. Additionally, a grading system was designed to score each image captured by the exoscope at the setting position, and the scores in the two tests were compared using the rank-sum test. RESULTS The CoBot system positioned the finder successfully in all rounds in test 1; the mean height errors ± SD were 1.14 mm ± 0.38 mm (downward) and 1.60 mm ± 0.89 mm (upward). The grading scores of images in tests 2 and 3 were significantly different. Regarding the total score and four subgroups, test 2 showed a more precise, better-positioned, and more stable vision field. The total manipulation time in test 2 was 20 minutes, and for test 3 it was 52 minutes. CONCLUSIONS The CoBot system successfully acted as a robust scope holding system to provide a stable and optimized surgical view during simulated port surgery, providing further evidence for the substitution of human hands, and leading to a more efficient, user-friendly, and precise operation.


2022 ◽  
Vol 951 (1) ◽  
pp. 012002
Author(s):  
A Khakimov ◽  
I Salakhutdinov ◽  
A Omolikov ◽  
S Utaganov

Abstract As it is known, a significant part of the yield of agricultural crops is lost due to harmful organisms, including diseases. The article reveals the data on the widespread types of plant diseases (rot, wilting, deformation, the formation of tumors, pustules, etc.) and their symptoms. Early identification of the pathogen type of plant infection is of high significance for disease control. Various methods are used to diagnose pathogens of disease on plant. This article discusses the review of the literature data on traditional methods for diagnosis of plant pathogens, such as visual observation, microscopy, mycological analysis, and biological diagnostics or the use of indicator plants. Rapid and reliable detection of plant disease and identification of its pathogen is the first and most important stage in disease control. Early identification of the cause of the disease allows timely selection of the proper protection method and ensures prevention of crop losses. There are a number of traditional methods for identifying plant diseases, however, in order to ensure the promptness and reliability of diagnostics, as well as to eliminate the shortcomings inherent in traditional diagnostics, in recent years, new means and technologies for identifying pathogens have been developed and introduced into practice. As well as the article provides information on such innovative methods of diagnosis of diseases and identification of their pathogens, which are used widely in the world today, such as immunodiagnostics, molecular-genetic (and phylogenetic) identification, mass spectrometry, etc.


2021 ◽  
Vol 37 (6) ◽  
pp. 670-678
Author(s):  
Jung Eun Choi ◽  
Hak Choi

Anseong Cheonryongsa, a temple located in Anseong Seoun Mountain, is a part of the second Jogye Order of Korean Buddhism, under the Yongju Temple, and enshrines a gilt-bronze seated Avalokitesvara Bodhisattva. In this study, X-ray fluorescence (XRF) analysis revealed that this statue is composed of Cu-27.2 wt%, Sn-12.6 wt% and Pb-48 wt%. A gamma (γ) ray (Ir-192) image confirmed damage on the backside of the statue, which was later repaired with wood. The XRF analysis and visual observation determined the boundary between the metal and wood in the statue. In addition, results of standard X-ray peak intensity of gold foil and correlation with thickness helped to derive an equation for calculating the thickness of the Avalokitesvara Bodhisattva’s gold foil. It was determined that the gilded chest (21 µm) and face (20.7 µm) of the statue were the thickest sections, the wooden substratum (11.9 µm) was the next-most thick, and the bronze (7.4 µm) was the thinnest layer.


Author(s):  
Ain Aqilah Basirun ◽  
Mohd Yunus Shukor

Biosorption is a kind of sorption technology in which the sorbent is derived from a biological source. At the moment, biosorption is seen as a simple, cost-effective, and environmentally friendly process that might be employed as a viable alternative to conventional techniques of pollution removal. When it comes to improper textile waste disposal, it falls under one of the branches of bioremediation that is used to reduce contamination in the setting of improper textile waste disposal. The sorption isotherm of Cibacron Blue onto bean peel were analyzed using three models—pseudo-1st, pseudo-2nd and Elovich, and fitted using non-linear regression. The Elovich model was the poorest in fitting the curve based on visual observation and the best was pseudo-2nd order based on statistical analysis such as root-mean-square error (RMSE), adjusted coefficient of determination (adjR2), bias factor (BF), accuracy factor (AF), corrected AICc (Akaike Information Criterion), Bayesian Information Criterion (BIC) and Hannan–Quinn information criterion (HQC). Nonlinear regression analysis using the pseudo-2nd order model gave values of equilibrium sorption capacity qe of 6.164 mg/g (95% confidence interval from 5.918 to 6.410 ) and a value of the pseudo-2nd-order rate constant, k2 of 0.034 (95% confidence interval from 0.024 to 0.045). Further analysis is needed to provide proof for the chemisorption mechanism usually tied to this kinetic.


2021 ◽  
Vol 9 (2) ◽  
pp. 48-52
Author(s):  
Ibrahim Alhaji Sabo ◽  
Salihu Yahuza ◽  
Bilal Ibrahim Dan-Iya ◽  
Abdussamad Abubakar

Malachite green is extensively used in the textile dye industry and in agriculture as fish pests’ pesticide. Biosorption is a type of sorption technique that uses a biological sorbent. As of now, biosorption is viewed as a simple and cost-effective process that might be used as an alternative to traditional pollution treatment methods. Bioremediation is one of the branches of bioremediation that is used to minimise pollution in the context of incorrect textile waste disposal. The sorption isotherm of Malachite Green onto graphene oxide were analyzed using three models—pseudo-1st, pseudo-2nd and Elovich, and fitted using non-linear regression. The Elovich model was the poorest in fitting the curve based on visual observation and the best was pseudo-2nd order based on statistical analysis such as root-mean-square error (RMSE), adjusted coefficient of determination (adjR2), bias factor (BF), accuracy factor (AF), corrected AICc (Akaike Information Criterion), Bayesian Information Criterion (BIC) and Hannan–Quinn information criterion (HQC). Nonlinear regression analysis using the pseudo-2nd order model gave values of equilibrium sorption capacity qe of 6.164 mg/g (95% confidence interval from 5.918 to 6.410) and a value of the pseudo-2nd-order rate constant, k2 of 0.034 (95% confidence interval from 0.024 to 0.045). Further analysis is needed to provide proof for the chemisorption mechanism usually tied to this kinetic.


Author(s):  
Bilal Ibrahim Dan-Iya ◽  
Salihu Yahuza ◽  
Ibrahim Alhaji Sabo

The widespread use of chromium in industrial applications such as leather tanning, metallurgy, electroplating, and refractory materials has resulted in it being one of the most harmful trace elements to be introduced into surface and ground waters. The sorption isotherm of chromium sorption onto calcium alginate nanoparticles were analyzed using three models—pseudo-1st, pseudo-2nd and Elovich, and fitted using non-linear regression. The Elovich model was the poorest in fitting the curve based on visual observation followed by the pseudo-1st order. Statistical analysis based on root-mean-square error (RMSE), adjusted coefficient of determination (adjR2), bias factor (BF), accuracy factor (AF), corrected AICc (Akaike Information Criterion), Bayesian Information Criterion (BIC) and Hannan–Quinn information criterion (HQC) that showed that the pseudo-1ST order model is the best model. Kinetic analysis using the pseudo-1st order model at 400 mg/L 4-BDE gave a value of equilibrium sorption capacity qe of 31.89 mg g-1 (95% confidence interval from 30.37 to 33.42) and a value of the pseudo-1st-order rate constant, k1 of 0.22 (95% confidence interval from 0.019 to 0.025). Further analysis is needed to provide proof for the chemisorption mechanism usually tied to this kinetic.


Sign in / Sign up

Export Citation Format

Share Document