scholarly journals Smooth and singular maximal averages over 2D hypersurfaces and associated Radon transforms

2021 ◽  
Vol 377 ◽  
pp. 107465
Author(s):  
Michael Greenblatt
Keyword(s):  
2005 ◽  
Vol 38 (37) ◽  
pp. 8003-8015 ◽  
Author(s):  
M K Nguyen ◽  
T T Truong ◽  
P Grangeat

2020 ◽  
Vol 23 (4) ◽  
pp. 967-979
Author(s):  
Boris Rubin ◽  
Yingzhan Wang

AbstractWe apply Erdélyi–Kober fractional integrals to the study of Radon type transforms that take functions on the Grassmannian of j-dimensional affine planes in ℝn to functions on a similar manifold of k-dimensional planes by integration over the set of all j-planes that meet a given k-plane at a right angle. We obtain explicit inversion formulas for these transforms in the class of radial functions under minimal assumptions for all admissible dimensions. The general (not necessarily radial) case, but for j + k = n − 1, n odd, was studied by S. Helgason [8] and F. Gonzalez [4, 5] on smooth compactly supported functions.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. A17-A21 ◽  
Author(s):  
Juan I. Sabbione ◽  
Mauricio D. Sacchi

The coefficients that synthesize seismic data via the hyperbolic Radon transform (HRT) are estimated by solving a linear-inverse problem. In the classical HRT, the computational cost of the inverse problem is proportional to the size of the data and the number of Radon coefficients. We have developed a strategy that significantly speeds up the implementation of time-domain HRTs. For this purpose, we have defined a restricted model space of coefficients applying hard thresholding to an initial low-resolution Radon gather. Then, an iterative solver that operated on the restricted model space was used to estimate the group of coefficients that synthesized the data. The method is illustrated with synthetic data and tested with a marine data example.


1987 ◽  
Vol 101 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Joseph P. S. Kung

AbstractLet and ℳ be subsets of a finite lattice L. is said to be concordant with ℳ if, for every element x in L, either x is in ℳ or there exists an element x+ such that (CS1) the Möbius function μ(x, x+) ≠ 0 and (CS2) for every element j in , x ∨ j ≠ x+. We prove that if is concordant with ℳ, then the incidence matrix I(ℳ | ) has maximum possible rank ||, and hence there exists an injection σ: → ℳ such that σ(j) ≥ j for all j in . Using this, we derive several rank and covering inequalities in finite lattices. Among the results are generalizations of the Dowling-Wilson inequalities and Dilworth's covering theorem to semimodular lattices, and a refinement of Dilworth's covering theorem for modular lattices.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Fedor Goncharov

AbstractIn this work we investigate numerically the reconstruction approach proposed in [F. O. Goncharov and R. G. Novikov, An analog of Chang inversion formula for weighted Radon transforms in multidimensions, Eurasian J. Math. Comput. Appl. 4 2016, 2, 23–32] for weighted ray transforms (weighted Radon transforms along oriented straight lines) in 3D. In particular, the approach is based on a geometric reduction of the data modeled by weighted ray transforms to new data modeled by weighted Radon transforms along two-dimensional planes in 3D. Such reduction could be seen as a preprocessing procedure which could be further completed by any preferred reconstruction algorithm. In a series of numerical tests on modelized and real SPECT (single photon emission computed tomography) data we demonstrate that such procedure can significantly reduce the impact of noise on reconstructions.


Sign in / Sign up

Export Citation Format

Share Document