scholarly journals Lysosomal Storage of Subunit c of Mitochondrial ATP Synthase in Brain-Specific Atp13a2-Deficient Mice

2016 ◽  
Vol 186 (12) ◽  
pp. 3074-3082 ◽  
Author(s):  
Shigeto Sato ◽  
Masato Koike ◽  
Manabu Funayama ◽  
Junji Ezaki ◽  
Takahiro Fukuda ◽  
...  
1991 ◽  
Vol 275 (1) ◽  
pp. 269-272 ◽  
Author(s):  
N A Hall ◽  
B D Lake ◽  
N N Dewji ◽  
A D Patrick

Immunochemical studies demonstrate that subunit c of mitochondrial ATP synthase is stored in the late-infantile, juvenile and adult forms of Batten's disease. It does not accumulate in the infantile form, or in other conditions involving lysosomal hypertrophy. These results suggest that the defective metabolism of subunit c is central to the pathogenesis of these three forms of Batten's disease.


1995 ◽  
Vol 310 (3) ◽  
pp. 887-892 ◽  
Author(s):  
M L Katz ◽  
C L Gao ◽  
J A Tompkins ◽  
R T Bronson ◽  
D T Chin

The subunit c protein of mitochondrial ATP synthase accumulates in lysosomal storage bodies of numerous tissues in human subjects with certain forms of ceroid-lipofuscinosis, a degenerative hereditary disease. Subunit c appears to constitute a major fraction of the total storage-body protein. Lysosomal accumulation of subunit c has also been reported in putative animal models (dogs, sheep and mice) for ceroid-lipofuscinosis. In humans with the juvenile form of the disease, hydrolysates of total storage-body protein have been found to contain significant amounts of epsilon-N-trimethyl-lysine (TML). TML is also abundant in storage-body protein hydrolysates from affected dogs and sheep. These findings suggested that one or both of the two lysine residues of subunit c might be methylated in the stored form of the protein. The normal subunit c protein from mitochondria does not appear to be methylated. In a putative canine model for human juvenile ceroid-lipofuscinosis, residue 43 of the storage-body subunit c was previously found to be TML. In the present study, subunit c was isolated from the storage bodies of humans with juvenile ceroid-lipofuscinosis, and from sheep and mice with apparently analogous diseases. In all three species, partial amino acid sequence analysis of the stored subunit c indicated that the protein contained TML at residue 43. These findings strongly suggest that specific methylation of lysine residue 43 of mitochondrial ATP synthase plays a central role in the lysosomal storage of this protein.


1994 ◽  
Vol 269 (13) ◽  
pp. 9906-9911
Author(s):  
M.L. Katz ◽  
J.S. Christianson ◽  
N.E. Norbury ◽  
C.L. Gao ◽  
A.N. Siakotos ◽  
...  

Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 215 ◽  
Author(s):  
James Cobley ◽  
Anna Noble ◽  
Rachel Bessell ◽  
Matthew Guille ◽  
Holger Husi

Oocytes are postulated to repress the proton pumps (e.g., complex IV) and ATP synthase to safeguard mitochondrial DNA homoplasmy by curtailing superoxide production. Whether the ATP synthase is inhibited is, however, unknown. Here we show that: oligomycin sensitive ATP synthase activity is significantly greater (~170 vs. 20 nmol/min−1/mg−1) in testes compared to oocytes in Xenopus laevis (X. laevis). Since ATP synthase activity is redox regulated, we explored a regulatory role for reversible thiol oxidation. If a protein thiol inhibits the ATP synthase, then constituent subunits must be reversibly oxidised. Catalyst-free trans-cyclooctene 6-methyltetrazine (TCO-Tz) immunocapture coupled to redox affinity blotting reveals several subunits in F1 (e.g., ATP-α-F1) and Fo (e.g., subunit c) are reversibly oxidised. Catalyst-free TCO-Tz Click PEGylation reveals significant (~60%) reversible ATP-α-F1 oxidation at two evolutionary conserved cysteine residues (C244 and C294) in oocytes. TCO-Tz Click PEGylation reveals ~20% of the total thiols in the ATP synthase are substantially oxidised. Chemically reversing thiol oxidation significantly increased oligomycin sensitive ATP synthase activity from ~12 to 100 nmol/min−1/mg−1 in oocytes. We conclude that reversible thiol oxidation inhibits the mitochondrial ATP synthase in X. laevis oocytes.


1997 ◽  
Vol 323 (2) ◽  
pp. 379-385 ◽  
Author(s):  
Ulf ANDERSSON ◽  
Josef HOUŠTĚK ◽  
Barbara CANNON

Pre-translational regulation of subunit c has been suggested to control the biosynthesis of mitochondrial ATP synthase (ATPase) in brown adipose tissue (BAT). Subunit c is encoded by the genes P1 and P2, which encode identical mature proteins. We have determined here the levels of P1 and P2 mRNAs in different tissues, in response to cold acclimation in rats, during ontogenic development of BAT in hamsters, and following thyroid hormone treatment in rat BAT and liver. Quantitative ribonuclease protection analysis showed that both the P1 and P2 mRNAs were present in all rat tissues measured. Their total amount in each tissue corresponded well with the ATPase content of that tissue. While the P1/P2 mRNA ratio is high in ATPase-rich tissues, the P2 mRNA dominates in tissues with less ATPase. Cold acclimation affects P1 but not P2 gene expression in rat BAT. A rapid and transient increase in P1 mRNA is followed by sustained depression, which is accompanied by a decrease in ATPase content. Similarly, ontogenic suppression of ATPase content in hamster BAT was accompanied by suppression of the P1 mRNA levels, while P2 expression was virtually unchanged. Furthermore, when hypothyroid rats were treated with thyroid hormone, the steady-state level of P1 but not of P2 mRNA was significantly increased in liver. BAT was unaffected. We conclude that the P1 and P2 genes for subunit c are differentially regulated in vivo. While the P2 gene is expressed constitutively, the P1 gene responds to different physiological stimuli as a means of modulating the relative content of ATP synthase.


Sign in / Sign up

Export Citation Format

Share Document