batten disease
Recently Published Documents





2022 ◽  
Vol 72 ◽  
pp. 48-54
Jon J. Brudvig ◽  
Jill M. Weimer

2022 ◽  
Vol 17 (1) ◽  
R. Badilla-Porras ◽  
A. Echeverri-McCandless ◽  
J. M. Weimer ◽  
A. Ulate-Campos ◽  
A. Soto-Rodríguez ◽  

Abstract Background Commonly known as Batten disease, the neuronal ceroid lipofuscinoses (NCLs) are a genetically heterogeneous group of rare pediatric lysosomal storage disorders characterized by the intracellular accumulation of autofluorescent material (known as lipofuscin), progressive neurodegeneration, and neurological symptoms. In 2002, a disease-causing NCL mutation in the CLN6 gene was identified (c.214G > T) in the Costa Rican population, but the frequency of this mutation among local Batten disease patients remains incompletely characterized, as do clinical and demographic attributes for this rare patient population. Objective To describe the main sociodemographic and clinical characteristics of patients with a clinical diagnosis for Batten Disease treated at the National Children's Hospital in Costa Rica and to characterize via molecular testing their causative mutations. Methods DNA extracted from buccal swabs was used for CLN6 gene sequencing. Participants’ sociodemographic and clinical characteristics were also obtained from their medical records. Results Nine patients with a clinical diagnosis of Batten disease were identified. Genetic sequencing determined the presence of the previously described Costa Rican homozygous mutation in 8 of 9 cases. One patient did not have mutations in the CLN6 gene. In all cases where the Costa Rican CLN6 mutation was present, it was accompanied by a substitution in intron 2. Patients were born in 4 of the 7 Costa Rican provinces, with an average onset of symptoms close to 4 years of age. No parental consanguinity was present in pedigrees. Initial clinical manifestations varied between patients but generally included: gait disturbances, language problems, visual impairment, seizures and psychomotor regression. Cortical and cerebellar atrophy was a constant finding when neuroimaging was performed. Seizure medication was a common element of treatment regimens. Conclusions This investigation supports that the previously characterized c.214G > T mutation is the most common causative NCL mutation in the Costa Rican population. This mutation is geographically widespread among Costa Rican NCL patients and yields a clinical presentation similar to that observed for CLN6 NCL patients in other geographies.

2021 ◽  
Lucy A. Barry ◽  
Graham W. Kay ◽  
Nadia L. Mitchell ◽  
Samantha J. Murray ◽  
Nigel P. Jay ◽  

AbstractThe neuronal ceroid lipofuscinoses (NCLs; Batten disease) are fatal, mainly childhood, inherited neurodegenerative lysosomal storage diseases. Sheep affected with a CLN6 form display progressive regionally defined glial activation and subsequent neurodegeneration, indicating that neuroinflammation may be causative of pathogenesis. In this study, aggregation chimeras were generated from homozygous unaffected normal and CLN6 affected sheep embryos, resulting in seven chimeric animals with varied proportions of normal to affected cells. These sheep were classified as affected-like, recovering-like or normal-like, based on their cell-genotype ratios and their clinical and neuropathological profiles.Neuropathological examination of the affected-like animals revealed intense glial activation, prominent storage body accumulation and severe neurodegeneration within all cortical brain regions, along with vision loss and decreasing intracranial volumes and cortical thicknesses consistent with ovine CLN6 disease. In contrast, intercellular communication affecting pathology was evident at both the gross and histological level in the normal-like and recovering-like chimeras, resulting in a lack of glial activation and rare storage body accumulation in only a few cells. Initial intracranial volumes of the recovering-like chimeras were below normal but progressively recovered to about normal by two years of age. All had normal cortical thicknesses, and none went blind. Extended neurogenesis was evident in the brains of all the chimeras.This study indicates that although CLN6 is a membrane bound protein, the consequent defect is not cell intrinsic. The lack of glial activation and inflammatory responses in the normal-like and recovering-like chimeras indicate that newly generated cells are borne into a microenvironment conducive to maturation and survival.

2021 ◽  
Vol 14 (12) ◽  
Robert J. Huber

ABSTRACT The neuronal ceroid lipofuscinoses (NCLs), collectively known as Batten disease, are a group of neurological diseases that affect all ages and ethnicities worldwide. There are 13 different subtypes of NCL, each caused by a mutation in a distinct gene. The NCLs are characterized by the accumulation of undigestible lipids and proteins in various cell types. This leads to progressive neurodegeneration and clinical symptoms including vision loss, progressive motor and cognitive decline, seizures, and premature death. These diseases have commonly been characterized by lysosomal defects leading to the accumulation of undigestible material but further research on the NCLs suggests that altered protein secretion may also play an important role. This has been strengthened by recent work in biomedical model organisms, including Dictyostelium discoideum, mice, and sheep. Research in D. discoideum has reported the extracellular localization of some NCL-related proteins and the effects of NCL-related gene loss on protein secretion during unicellular growth and multicellular development. Aberrant protein secretion has also been observed in mammalian models of NCL, which has allowed examination of patient-derived cerebrospinal fluid and urine for potential diagnostic and prognostic biomarkers. Accumulated evidence links seven of the 13 known NCL-related genes to protein secretion, suggesting that altered secretion is a common hallmark of multiple NCL subtypes. This Review highlights the impact of altered protein secretion in the NCLs, identifies potential biomarkers of interest and suggests that future work in this area can provide new therapeutic insight.

2021 ◽  
Samantha J Murray ◽  
Nadia L Mitchell

Abstract Neuronal ceroid lipofuscinoses (NCL; Batten disease) are a group of inherited neurodegenerative diseases with a common set of symptoms including cognitive and motor decline and vision loss. Naturally occurring sheep models of CLN5 and CLN6 disease display the key clinical features of NCL, including a progressive loss of vision. We assessed retinal histology, inflammation, and lysosomal storage accumulation in CLN5 affected (CLN5−/−) and CLN6 affected (CLN6−/−) sheep eyes and age-matched controls at 3, 6, 12, and 18 months of age to determine the onset and progression of retinal pathology in NCL sheep. The retina of CLN5−/− sheep shows progressive atrophy of the outer retinal layers, widespread inflammation, and accumulation of lysosomal storage in retinal ganglion cells late in disease. In contrast, CLN6−/− retina shows significant atrophy of all retinal layers, progressive inflammation, and earlier accumulation of lysosomal storage. This study has highlighted the differential vulnerability of retinal layers and the time course of retinal atrophy in two distinct models of NCL disease. This data will be valuable in determining potential targets for ocular therapies and the optimal timing of these therapies for protection from retinal dysfunction and degeneration in NCL.

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6235
Ahmed Morsy ◽  
Angelica V. Carmona ◽  
Paul C. Trippier

Batten disease or neuronal ceroid lipofuscinosis (NCL) is a group of rare, fatal, inherited neurodegenerative lysosomal storage disorders. Numerous genes (CLN1–CLN8, CLN10–CLN14) were identified in which mutations can lead to NCL; however, the underlying pathophysiology remains elusive. Despite this, the NCLs share some of the same features and symptoms but vary in respect to severity and onset of symptoms by age. Some common symptoms include the progressive loss of vision, mental and motor deterioration, epileptic seizures, premature death, and in the rare adult-onset, dementia. Currently, all forms of NCL are fatal, and no curative treatments are available. Induced pluripotent stem cells (iPSCs) can differentiate into any cell type of the human body. Cells reprogrammed from a patient have the advantage of acquiring disease pathogenesis along with recapitulation of disease-associated phenotypes. They serve as practical model systems to shed new light on disease mechanisms and provide a phenotypic screening platform to enable drug discovery. Herein, we provide an overview of available iPSC models for a number of different NCLs. More specifically, we highlight findings in these models that may spur target identification and drug development.

Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1412
Indranil Basak ◽  
Rachel A. Hansen ◽  
Michael E. Ward ◽  
Stephanie M. Hughes

Batten disease is a devastating, childhood, rare neurodegenerative disease characterised by the rapid deterioration of cognition and movement, leading to death within ten to thirty years of age. One of the thirteen Batten disease forms, CLN5 Batten disease, is caused by mutations in the CLN5 gene, leading to motor deficits, mental deterioration, cognitive impairment, visual impairment, and epileptic seizures in children. A characteristic pathology in CLN5 Batten disease is the defects in lysosomes, leading to neuronal dysfunction. In this study, we aimed to investigate the lysosomal changes in CLN5-deficient human neurons. We used an induced pluripotent stem cell system, which generates pure human cortical-like glutamatergic neurons. Using CRISPRi, we inhibited the expression of CLN5 in human neurons. The CLN5-deficient human neurons showed reduced acidic organelles and reduced lysosomal enzyme activity measured by microscopy and flow cytometry. Furthermore, the CLN5-deficient human neurons also showed impaired lysosomal movement—a phenotype that has never been reported in CLN5 Batten disease. Lysosomal trafficking is key to maintain local degradation of cellular wastes, especially in long neuronal projections, and our results from the human neuronal model present a key finding to understand the underlying lysosomal pathology in neurodegenerative diseases.

2021 ◽  
Seung Yon Koh ◽  
Jacob T Cain ◽  
Helen Magee ◽  
Katherine A White ◽  
Mitch Rechtzigel ◽  

As neurons establish extensive connections throughout the central nervous system, the transport of cargo along the microtubule network of the axon is crucial for differentiation and homeostasis. Specifically, building blocks such as membrane and cytoskeletal components, organelles, transmembrane receptors, adhesion molecules, and peptide neurotransmitters all require proper transport to the presynaptic compartment. Here, we identify a novel complex regulating vesicular endoplasmic reticulum transport in neurites, composed of CLN6: an ER-associated protein of relatively unknown function implicated in CLN6-Batten disease; CRMP2: a tubulin binding protein important in regulating neurite microtubule dynamics; and KLC4: a classic transport motor protein. We show that this 'CCK' complex allows ER-derived vesicles to migrate to the distal end of the axon, aiding in proper neurite outgrowth and arborization. In the absence of CLN6, the CCK complex does not function effectively, leading to reduced vesicular transport, stunted neurite outgrowth, and deficits in CRMP2 binding to other protein partners. Treatment with a CRMP2 modulating compound, lanthionine ketimine ester, partially restores these deficits in CLN6-deficient mouse neurons, indicating that stabilization of CRMP2 interacting partners may prove beneficial in lieu of complete restoration of the CCK complex. Taken together, these findings reveal a novel mechanism of ER-derived vesicle transport in the axon and provide new insights into therapeutic targets for neurodegenerative disease.

2021 ◽  
Mitchell J. Rechtzigel ◽  
Brandon L Meyerink ◽  
Hannah Leppert ◽  
Tyler B Johnson ◽  
Jacob T. Cain ◽  

Batten disease is unique among lysosomal storage disorders for the early and profound manifestation in the central nervous system, but little is known regarding potential neuron-specific roles for the disease-associated proteins. We demonstrate substantial overlap in the protein interactomes of three transmembrane Batten proteins (CLN3, CLN6, and CLN8), and that their absence leads to synaptic depletion of key partners (i.e. SNAREs and tethers) and aberrant synaptic SNARE dynamics in vivo, demonstrating a novel shared etiology.

Sign in / Sign up

Export Citation Format

Share Document