subunit c
Recently Published Documents


TOTAL DOCUMENTS

355
(FIVE YEARS 31)

H-INDEX

47
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Xuekai Shi ◽  
Xiaojian Liu ◽  
Anastasia M.W. Cooper ◽  
Kristopher Silver ◽  
Hans Merzendorfer ◽  
...  

2021 ◽  
Author(s):  
Thamiya Vasanthakumar ◽  
Kristine A Keon ◽  
Stephanie A Bueler ◽  
Michael C Jaskolka ◽  
John L Rubinstein

Vacuolar-type ATPases (V-ATPases) are rotary enzymes that acidify intracellular compartments in eukaryotic cells. These multi-subunit complexes consist of a cytoplasmic V1 region that hydrolyzes ATP and a membrane-embedded VO region that transports protons. V-ATPase activity is regulated by reversible dissociation of the two regions, with the isolated V1 and VO complexes becoming autoinhibited upon disassembly and subunit C subsequently detaching from V1. In yeast, assembly of the V1 and VO regions is mediated by the RAVE complex through an unknown mechanism. We used cryoEM of yeast V-ATPase to determine structures of the intact enzyme, the dissociated but complete V1 complex, and the V1 complex lacking subunit C. Upon separation, V1 undergoes a dramatic conformational rearrangement, with its rotational state becoming incompatible for reassembly with VO. Loss of subunit C allows V1 to match the rotational state of VO, suggesting how RAVE could reassemble V1 and VO by recruiting subunit C.


2021 ◽  
Author(s):  
Yong Zi Tan ◽  
Yazan M Abbas ◽  
Jing Ze Wu ◽  
Di Wu ◽  
Geoffrey G Hesketh ◽  
...  

V-ATPases are rotary proton pumps that serve as signaling hubs, with numerous proposed binding partners in cells. We used cryoEM to detect endogenous proteins that associate with V-ATPase from porcine kidney. A super-stoichiometric copy of subunit C was found in ~3% of complexes, while an additional ~1.6% of complexes bound mEAK7, a protein with proposed roles in dauer formation in nematodes and mTOR signaling in mammals. High-resolution cryoEM of porcine kidney V-ATPase with recombinant mEAK7 shows that mEAK7's TLDc domain, which is found in other proteins proposed to bind V-ATPase, interacts with V-ATPase's stator while its C-terminal α helix binds V-ATPase's rotor. This crosslink would be expected to inhibit rotary catalysis. However, exogenous mEAK7 does not inhibit purified V-ATPase activity and mEAK7 overexpression in cells does not alter lysosomal or phagosomal pH. Instead, cryoEM suggests that interaction of mEAK7 with V-ATPase is disrupted by ATP-induced rotation of the rotor. Together, these results reveal how TLDc domains bind V-ATPases and suggest that V-ATPase binding proteins can form labile interactions that are sensitive to the enzyme's activity.


Heliyon ◽  
2021 ◽  
pp. e08482
Author(s):  
Mustafa Alhaji Isa ◽  
Mustapha B. Abubakar ◽  
Mohammed Mustapha Mohammed ◽  
Muhammad Musa Ibrahim ◽  
Falmata Audu Gubio

2021 ◽  
Vol 9 ◽  
Author(s):  
Filipa Calisto ◽  
Manuela M. Pereira

Several energy-transducing microbial enzymes have their peripheral subunits connected to the membrane through an integral membrane protein, that interacts with quinones but does not have redox cofactors, the so-called NrfD-like subunit. The periplasmic nitrite reductase (NrfABCD) was the first complex recognized to have a membrane subunit with these characteristics and consequently provided the family's name: NrfD. Sequence analyses indicate that NrfD homologs are present in many diverse enzymes, such as polysulfide reductase (PsrABC), respiratory alternative complex III (ACIII), dimethyl sulfoxide (DMSO) reductase (DmsABC), tetrathionate reductase (TtrABC), sulfur reductase complex (SreABC), sulfite dehydrogenase (SoeABC), quinone reductase complex (QrcABCD), nine-heme cytochrome complex (NhcABCD), group-2 [NiFe] hydrogenase (Hyd-2), dissimilatory sulfite-reductase complex (DsrMKJOP), arsenate reductase (ArrC) and multiheme cytochrome c sulfite reductase (MccACD). The molecular structure of ACIII subunit C (ActC) and Psr subunit C (PsrC), NrfD-like subunits, revealed the existence of ion-conducting pathways. We performed thorough primary structural analyses and built structural models of the NrfD-like subunits. We observed that all these subunits are constituted by two structural repeats composed of four-helix bundles, possibly harboring ion-conducting pathways and containing a quinone/quinol binding site. NrfD-like subunits may be the ion-pumping module of several enzymes. Our data impact on the discussion of functional implications of the NrfD-like subunit-containing complexes, namely in their ability to transduce energy.


Cell Reports ◽  
2021 ◽  
Vol 35 (2) ◽  
pp. 108983
Author(s):  
Giampaolo Morciano ◽  
Gaia Pedriali ◽  
Massimo Bonora ◽  
Rita Pavasini ◽  
Elisa Mikus ◽  
...  

2021 ◽  
Author(s):  
Xin Su ◽  
Alain Dautant ◽  
Malgorzata Rak ◽  
François Godard ◽  
Nahia Ezkurdia ◽  
...  

Abstract The human ATP synthase is an assembly of 29 subunits of 18 different types, of which only two (a and 8) are encoded in the mitochondrial genome. Subunit a, together with an oligomeric ring of c-subunit (c-ring), forms the proton pathway responsible for the transport of protons through the mitochondrial inner membrane, coupled to rotation of the c-ring and ATP synthesis. Neuromuscular diseases have been associated to a number of mutations in the gene encoding subunit a, ATP6. The most common, m.8993 T > G, leads to replacement of a strictly conserved leucine residue with arginine (aL156R). We previously showed that the equivalent mutation (aL173R) dramatically compromises respiratory growth of Saccharomyces cerevisiae and causes a 90% drop in the rate of mitochondrial ATP synthesis. Here we isolated revertants from the aL173R strain that show improved respiratory growth. Four first-site reversions at codon 173 (aL173M, aL173S, aL173K, and aL173W) and five second-site reversions at another codon (aR169M, aR169S, aA170P, aA170G, and aI216S) were identified. Based on the atomic structures of yeast ATP synthase and the biochemical properties of the revertant strains, we propose that the aL173R mutation is responsible for unfavorable electrostatic interactions that prevent the release of protons from the c-ring into a channel from which protons move from the c-ring to the mitochondrial matrix. The results provide further evidence that yeast aL173 (and thus human aL156) optimizes the exit of protons from ATP synthase, but is not essential despite its strict evolutionnary conservation.


2021 ◽  
Author(s):  
Joseph Balnis ◽  
Lisa A. Drake ◽  
Catherine E. Vincent ◽  
Tanner C. Korponay ◽  
Diane V. Singer ◽  
...  

AbstractPatients with pulmonary emphysema often develop locomotor muscle dysfunction, which is independently associated with disability and higher mortality in that population. Muscle dysfunction entails reduced force-generation capacity which partially depends on fibers’ oxidative potential, yet very little mechanistic research has focused on muscle respiration in pulmonary emphysema. Using a recently established animal model of pulmonary emphysema-driven skeletal muscle dysfunction, we found downregulation of succinate dehydrogenase (SDH) subunit C in association with lower oxygen consumption and fatigue-tolerance in locomotor muscles. Reduced SDH activity has been previously observed in muscles from patients with pulmonary emphysema and we found that SDHC is required to support respiration in cultured muscle cells. Moreover, in-vivo gain of SDH function in emphysema animals muscles resulted in better oxygen consumption rate (OCR) and fatigue tolerance. These changes correlated with a larger number of relatively more oxidative type 2-A and 2X fibers, and a reduced amount of 2B fibers. Our data suggests that SDHC is a key regulator of respiration and fatigability in pulmonary emphysema-driven skeletal muscles, which could be impactful to develop strategies aimed at attenuating this comorbidity.


FEBS Letters ◽  
2020 ◽  
Vol 594 (17) ◽  
pp. 2829-2839
Author(s):  
Shi Min Sherilyn Chong ◽  
Neelagandan Kamariah ◽  
Gerhard Grüber

Sign in / Sign up

Export Citation Format

Share Document