mitochondrial atp synthase
Recently Published Documents


TOTAL DOCUMENTS

497
(FIVE YEARS 71)

H-INDEX

52
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Alexey Amunts ◽  
Ondrej Gahura ◽  
Alexander Muhleip ◽  
Carolina Hierro-Yap ◽  
Brian Panicucci ◽  
...  

Abstract Mitochondrial ATP synthase forms stable dimers arranged into oligomeric assemblies that generate the inner-membrane curvature essential for efficient energy conversion. Here, we report cryo-EM structures of the intact ATP synthase dimer from Trypanosoma brucei in ten different rotational states. The model consists of 25 subunits, including nine lineage-specific, as well as 36 lipids. The rotary mechanism is influenced by the divergent peripheral stalk, conferring a greater conformational flexibility. Proton transfer in the lumenal half-channel occurs via a chain of five ordered water molecules. The dimerization interface is formed by subunit-g that is critical for interactions but not for the catalytic activity. Although overall dimer architecture varies among eukaryotes, we find that subunit-g together with subunit-e form an ancestral oligomerization motif, which is shared between the trypanosomal and mammalian lineages. Therefore, our data defines the subunit-g/e module as a structural component determining ATP synthase oligomeric assemblies.


2021 ◽  
Author(s):  
Michael Zech ◽  
Robert Kopajtich ◽  
Katja Steinbrücker ◽  
Céline Bris ◽  
Naig Gueguen ◽  
...  

Open Biology ◽  
2021 ◽  
Vol 11 (12) ◽  
Author(s):  
Till Klecker ◽  
Benedikt Westermann

Mitochondria are complex organelles with two membranes. Their architecture is determined by characteristic folds of the inner membrane, termed cristae. Recent studies in yeast and other organisms led to the identification of four major pathways that cooperate to shape cristae membranes. These include dimer formation of the mitochondrial ATP synthase, assembly of the mitochondrial contact site and cristae organizing system (MICOS), inner membrane remodelling by a dynamin-related GTPase (Mgm1/OPA1), and modulation of the mitochondrial lipid composition. In this review, we describe the function of the evolutionarily conserved machineries involved in mitochondrial cristae biogenesis with a focus on yeast and present current models to explain how their coordinated activities establish mitochondrial membrane architecture.


2021 ◽  
Vol 11 ◽  
Author(s):  
Marco Fiorillo ◽  
Béla Ózsvári ◽  
Federica Sotgia ◽  
Michael P. Lisanti

Recently, we presented evidence that high mitochondrial ATP production is a new therapeutic target for cancer treatment. Using ATP as a biomarker, we isolated the “metabolically fittest” cancer cells from the total cell population. Importantly, ATP-high cancer cells were phenotypically the most aggressive, with enhanced stem-like properties, showing multi-drug resistance and an increased capacity for cell migration, invasion and spontaneous metastasis. In support of these observations, ATP-high cells demonstrated the up-regulation of both mitochondrial proteins and other protein biomarkers, specifically associated with stemness and metastasis. Therefore, we propose that the “energetically fittest” cancer cells would be better able to resist the selection pressure provided by i) a hostile micro-environment and/or ii) conventional chemotherapy, allowing them to be naturally-selected for survival, based on their high ATP content, ultimately driving tumor recurrence and distant metastasis. In accordance with this energetic hypothesis, ATP-high MDA-MB-231 breast cancer cells showed a dramatic increase in their ability to metastasize in a pre-clinical model in vivo. Conversely, metastasis was largely prevented by treatment with an FDA-approved drug (Bedaquiline), which binds to and inhibits the mitochondrial ATP-synthase, leading to ATP depletion. Clinically, these new therapeutic approaches could have important implications for preventing treatment failure and avoiding cancer cell dormancy, by employing ATP-depletion therapy, to target even the fittest cancer cells.


2021 ◽  
Author(s):  
Caroline E. Dewar ◽  
Silke Oeljeklaus ◽  
Bettina Warscheid ◽  
André Schneider

The mitochondrial F1Fo ATP synthase of Trypanosoma brucei has been studied in detail. Whereas its F1 moiety is relatively highly conserved in structure and composition, the same is not the case for the Fo part and the peripheral stalk. A core subunit of the latter, the normally conserved subunit b, could not be identified in trypanosomes suggesting that it might be absent. Here we have identified a 17 kDa mitochondrial protein of the inner membrane that is essential for normal growth, efficient oxidative phosphorylation and membrane potential maintenance. Pulldown experiments and native PAGE analysis indicate that the protein is associated with the F1Fo ATP synthase. Its ablation reduces the levels of Fo subunits, but not those of F1, and disturbs the cell cycle. HHpred analysis showed that the protein has structural similarities to subunit b of other species, indicating that the Fo part of the trypanosomal ATP synthase does contain a highly diverged subunit b. Thus, the Fo part of the trypanosomal ATPase synthase may be more widely conserved than initially thought.


Author(s):  
Elizaveta V. Uzlova ◽  
Siarhei M. Zimatkin

Mitochondrial ATP synthase is the main enzyme of ATP synthesis. A large number of diseases, including neurodegenerative ones, are associated with disorders of its assembly and functioning. The aim of the work is to reveal the patterns and features of the regional distribution of ATP synthase in the neurons of the rat brain structures, with a quantitative assessment of its content at the cellular level. The study was carried out on material from 5 outbred white male rats. Paraffin sections were stained by the Nissl method to identify structures of the brain and cervical segments of the spinal cord, and for ATP synthase by immunohistochemical method; 102 structures of the rat brain were studied cytophotometrically. Immunoreactivity of ATP synthase was found in all structures of the rat brain with high heterogeneity, while most structures are characterised with a moderate content of ATP synthase. A high content of ATP synthase was found in large neurons and in neurons of structures of phylogenetically older brain divisions. The content of ATP synthase also depends on the layer of the cortex and the position of neurons in the reflex arc. In the spinal cord the content of ATP synthase depends not only on the size of neurons, but also on the gray matter layer.


2021 ◽  
Author(s):  
Ondrej Gahura ◽  
Alexander Muhleip ◽  
Carolina Hierro-Yap ◽  
Brian Panicucci ◽  
Minal Jain ◽  
...  

Mitochondrial ATP synthase forms stable dimers arranged into oligomeric assemblies that generate the inner-membrane curvature essential for efficient energy conversion. Here, we report cryo EM structures of the intact ATP synthase dimer from trypanosomes in 10 different rotational states. The model consists of 25 subunits, including 11 lineage-specific, as well as 36 lipids. The rotary mechanism is influenced by the divergent peripheral stalk, conferring a greater conformational flexibility. Proton transfer in the lumenal half-channel occurs via a chain of five ordered water molecules. The dimerization interface is formed by subunit-g that is critical for interactions but not for the catalytic activity. Although overall dimer architecture varies among eukaryotes, we find that subunit-g and -e form a common ancestral oligomerisation motif, which is shared between the trypanosomal and mammalian lineages. Therefore, our data defines the subunit-g/e module as a structural component determining ATP synthase oligomeric assemblies.


2021 ◽  
Vol 22 (19) ◽  
pp. 10787
Author(s):  
Nicoleta Anghel ◽  
Joachim Müller ◽  
Mauro Serricchio ◽  
Jennifer Jelk ◽  
Peter Bütikofer ◽  
...  

Toxoplasma gondii is an apicomplexan parasite that infects and proliferates within many different types of host cells and infects virtually all warm-blooded animals and humans. Trypanosoma brucei is an extracellular kinetoplastid that causes human African trypanosomiasis and Nagana disease in cattle, primarily in rural sub-Saharan Africa. Current treatments against both parasites have limitations, e.g., suboptimal efficacy and adverse side effects. Here, we investigate the potential cellular and molecular targets of a trithiolato-bridged arene ruthenium complex conjugated to 9-(2-hydroxyethyl)-adenine (1), which inhibits both parasites with IC50s below 10−7 M. Proteins that bind to 1 were identified using differential affinity chromatography (DAC) followed by shotgun-mass spectrometry. A trithiolato-bridged ruthenium complex decorated with hypoxanthine (2) and 2-hydroxyethyl-adenine (3) were included as controls. Transmission electron microscopy (TEM) revealed distinct ultrastructural modifications in the mitochondrion induced by (1) but not by (2) and (3) in both species. DAC revealed 128 proteins in T. gondii and 46 proteins in T. brucei specifically binding to 1 but not 2 or 3. In T. gondii, the most abundant was a protein with unknown function annotated as YOU2. This protein is a homolog to the human mitochondrial inner membrane translocase subunit Tim10. In T. brucei, the most abundant proteins binding specifically to 1 were mitochondrial ATP-synthase subunits. Exposure of T. brucei bloodstream forms to 1 resulted in rapid breakdown of the ATP-synthase complex. Moreover, both datasets contained proteins involved in key steps of metabolism and nucleic acid binding proteins.


Author(s):  
Ai Vu Hong ◽  
Mathilde Sanson ◽  
Isabelle Richard ◽  
David Israeli

We recently identified a signaling pathway that links the upregulation of miR-379 with a mitochondrial response in dystrophic muscle. In the present commentary, we explain the significance that this pathway may have in mitochondrial dysfunction in Duchenne muscular dystrophy (DMD). We identified the upregulation of miR-379 in the serum and muscles of DMD animal models and patients. We found that miR-379 is one of very few miRNAs whose expression was normalized in DMD patients treated with glucocorticoid. We identified EIF4G2 as a miR-379 target, which may promote mitochondrial oxidative phosphorylation (OxPhos) in the skeletal muscle. We found enriched EIF4G2 expression in oxidative fibers, and identified the mitochondrial ATP synthase subunit DAPIT as a translational target of EIF4G2. The identified signaling cascade, which comprises miR-379, EIF4G2 and DAPIT, may link the glucocorticoid treatment in DMD to a recovered mitochondrial ATP synthesis rate. We propose an updated model of mitochondrial dysfunction in DMD.


2021 ◽  
Vol 22 (18) ◽  
pp. 9717
Author(s):  
Danielius Umbrasas ◽  
Odeta Arandarcikaite ◽  
Ramune Grigaleviciute ◽  
Rimantas Stakauskas ◽  
Vilmante Borutaite

Mitochondrial dysfunction during ischemic stroke ultimately manifests as ATP depletion. Mitochondrial ATP synthase upon loss of mitochondrial membrane potential during ischemia rapidly hydrolyses ATP and thus contributes to ATP depletion. Increasing evidence suggests that inhibition of ATP synthase limits ATP depletion and is protective against ischemic tissue damage. Bedaquiline (BDQ) is an anti-microbial agent, approved for clinical use, that inhibits ATP synthase of Mycobacteria; however recently it has been shown to act on mitochondrial ATP synthase, inhibiting both ATP synthesis and hydrolysis in low micromolar concentrations. In this study, we investigated whether preconditioning with BDQ can alleviate ischemia/reperfusion-induced brain injury in Wistar rats after middle cerebral artery occlusion-reperfusion and whether it affects mitochondrial functions. We found that BDQ was effective in limiting necrosis and neurological dysfunction during ischemia-reperfusion. BDQ also caused inhibition of ATPase activity, mild uncoupling of respiration, and stimulated mitochondrial respiration both in healthy and ischemic mitochondria. Mitochondrial calcium retention capacity was unaffected by BDQ preconditioning. We concluded that BDQ has neuroprotective properties associated with its action on mitochondrial respiration and ATPase activity.


Sign in / Sign up

Export Citation Format

Share Document