Biological applications and numerical solution based on Monte Carlo method for a two-dimensional parabolic inverse problem

2008 ◽  
Vol 204 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Morteza Ebrahimi ◽  
Rahman Farnoosh ◽  
Somayeh Ebrahimi
Author(s):  
Sergey I. Kabanikhin ◽  
Karl K. Sabelfeld ◽  
Nikita S. Novikov ◽  
Maxim A. Shishlenin

AbstractThe coefficient inverse problem for the two-dimensional wave equation is solved. We apply the Gelfand–Levitan approach to transform the nonlinear inverse problem to a family of linear integral equations. We consider the Monte Carlo method for solving the Gelfand–Levitan equation. We obtain the estimation of the solution of the Gelfand–Levitan equation in one specific point, due to the properties of the method. That allows the Monte Carlo method to be more effective in terms of span cost, compared with regular methods of solving linear system. Results of numerical simulations are presented.


Author(s):  
Makoto Shiojiri ◽  
Toshiyuki Isshiki ◽  
Tetsuya Fudaba ◽  
Yoshihiro Hirota

In hexagonal Se crystal each atom is covalently bound to two others to form an endless spiral chain, and in Sb crystal each atom to three others to form an extended puckered sheet. Such chains and sheets may be regarded as one- and two- dimensional molecules, respectively. In this paper we investigate the structures in amorphous state of these elements and the crystallization.HRTEM and ED images of vacuum-deposited amorphous Se and Sb films were taken with a JEM-200CX electron microscope (Cs=1.2 mm). The structure models of amorphous films were constructed on a computer by Monte Carlo method. Generated atoms were subsequently deposited on a space of 2 nm×2 nm as they fulfiled the binding condition, to form a film 5 nm thick (Fig. 1a-1c). An improvement on a previous computer program has been made as to realize the actual film formation. Radial distribution fuction (RDF) curves, ED intensities and HRTEM images for the constructed structure models were calculated, and compared with the observed ones.


2013 ◽  
Vol 380-384 ◽  
pp. 1143-1146
Author(s):  
Xiang Guo Liu

The paper researches the parametric inversion of the two-dimensional convection-diffusion equation by means of best perturbation method, draw a Numerical Solution for such inverse problem. It is shown by numerical simulations that the method is feasible and effective.


2020 ◽  
Vol 312 ◽  
pp. 244-250
Author(s):  
Alexander Konstantinovich Chepak ◽  
Leonid Lazarevich Afremov ◽  
Alexander Yuryevich Mironenko

The concentration phase transition (CPT) in a two-dimensional ferromagnet was simulated by the Monte Carlo method. The description of the CPT was carried out using various order parameters (OP): magnetic, cluster, and percolation. For comparison with the problem of the geometric (percolation) phase transition, the thermal effect on the spin state was excluded, and thus, CPT was reduced to percolation transition. For each OP, the values ​​of the critical concentration and critical indices of the CPT are calculated.


2020 ◽  
Vol 173 ◽  
pp. 109420 ◽  
Author(s):  
Martina Azzolini ◽  
Olga Yu. Ridzel ◽  
Pavel S. Kaplya ◽  
Viktor Afanas’ev ◽  
Nicola M. Pugno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document