Curvature based normalized 3D component facial image recognition using fuzzy integral

2008 ◽  
Vol 205 (2) ◽  
pp. 815-823 ◽  
Author(s):  
Yeunghak Lee ◽  
David Marshall
Information ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Alexey Semenkov ◽  
Dmitry Bragin ◽  
Yakov Usoltsev ◽  
Anton Konev ◽  
Evgeny Kostuchenko

Modern facial recognition algorithms make it possible to identify system users by their appearance with a high level of accuracy. In such cases, an image of the user’s face is converted to parameters that later are used in a recognition process. On the other hand, the obtained parameters can be used as data for pseudo-random number generators. However, the closeness of the sequence generated by such a generator to a truly random one is questionable. This paper proposes a system which is able to authenticate users by their face, and generate pseudo-random values based on the facial image that will later serve to generate an encryption key. The generator of a random value was tested with the NIST Statistical Test Suite. The subsystem of image recognition was also tested under various conditions of taking the image. The test results of the random value generator show a satisfactory level of randomness, i.e., an average of 0.47 random generation (NIST test), with 95% accuracy of the system as a whole.


2018 ◽  
Vol 78 (11) ◽  
pp. 14799-14822 ◽  
Author(s):  
Soumendu Chakraborty ◽  
Satish Kumar Singh ◽  
Pavan Chakraborty

Author(s):  
A. Vinay ◽  
Abhijay Gupta ◽  
Aprameya Bharadwaj ◽  
Arvind Srinivasan ◽  
K. N. Balasubramanya Murthy ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
pp. 186-191
Author(s):  
Parasian DP Silitonga ◽  
Romanus Damanik

Abstract- The study of face recognition is one of the areas of computer vision that requires significant research at the moment. Numerous researchers have conducted studies on facial image recognition using a variety of techniques or methods to achieve the highest level of accuracy possible when recognizing a person's face from existing images. However, recognizing the image of a human face is not easy for a computer. As a result, several approaches were taken to resolve this issue. This study compares two (two) machine learning algorithms for facial image recognition to determine which algorithm has the highest level of accuracy, precision, recall, and AUC. The comparison is carried out in the following steps: image acquisition, preprocessing, feature extraction, face classification, training, and testing. Based on the stages and experiments conducted on public image datasets, it is concluded that the SVM algorithm, on average, has a higher level of accuracy, precision, and recall than the k-NN algorithm when the dataset proportion is 90:10. While the k-NN algorithm has the highest similarity in terms of accuracy, precision, and recall at 80%: 20% and 70%: 30% of 99.20. However, for the highest AUC percentage level, the k-NN algorithm outperforms SVM at a dataset proportion of 80%: 20% at 100%.


Sign in / Sign up

Export Citation Format

Share Document