The iterative methods for computing the generalized inverse of the bounded linear operator between Banach spaces

2009 ◽  
Vol 214 (2) ◽  
pp. 391-410 ◽  
Author(s):  
Xiaoji Liu ◽  
Yaoming Yu ◽  
Chunmei Hu
2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Jianbing Cao ◽  
Yifeng Xue

Let and be Banach spaces, and let be a bounded linear operator. In this paper, we first define and characterize the quasi-linear operator (resp., out) generalized inverse (resp., ) for the operator , where and are homogeneous subsets. Then, we further investigate the perturbation problems of the generalized inverses and . The results obtained in this paper extend some well-known results for linear operator generalized inverses with prescribed range and kernel.


2001 ◽  
Vol 43 (1) ◽  
pp. 113-121
Author(s):  
Teresa Bermúdez ◽  
Antonio Martinón

We give algebraic conditions characterizing chain-finite operators and locally chain-finite operators on Banach spaces. For instance, it is shown that T is a chain-finite operator if and only if some power of T is relatively regular and commutes with some generalized inverse; that is there are a bounded linear operator B and a positive integer k such that TkBTk =Tk and TkB=BTk. Moreover, we obtain an algebraic characterization of locally chain-finite operators similar to (1).


1985 ◽  
Vol 37 (5) ◽  
pp. 908-920
Author(s):  
A. D. Andrew

1. In this paper, we investigate the ranges of projections on certain Banach spaces of functions defined on a diadic tree. The notion of a “tree-like” Banach space is due to James 4], who used it to construct the separable space JT which has nonseparable dual and yet does not contain l1. This idea has proved useful. In [3], Hagler constructed a hereditarily c0 tree space, HT, and Schechtman [6] constructed, for each 1 ≦ p ≦ ∞, a reflexive Banach space, STp with a 1-unconditional basis which does not contain lp yet is uniformly isomorphic to for each n.In [1] we showed that if U is a bounded linear operator on JT, then there exists a subspace W ⊂ JT, isomorphic to JT such that either U or (1 — U) acts as an isomorphism on W and UW or (1 — U)W is complemented in JT. In this paper, we establish this result for the Hagler and Schechtman tree spaces.


1991 ◽  
Vol 14 (3) ◽  
pp. 611-614 ◽  
Author(s):  
James R. Holub

It is shown that ifXis a uniformly convex Banach space andSa bounded linear operator onXfor which‖I−S‖=1, thenSis invertible if and only if‖I−12S‖<1. From this it follows that ifSis invertible onXthen either (i)dist(I,[S])<1, or (ii)0is the unique best approximation toIfrom[S], a natural (partial) converse to the well-known sufficient condition for invertibility thatdist(I,[S])<1.


CAUCHY ◽  
2017 ◽  
Vol 4 (4) ◽  
pp. 167
Author(s):  
Minanur Rohman

<p class="AbstractCxSpFirst">In this paper, we will discuss some applications of almost surjective epsilon-isometry mapping, one of them is in Lorentz space ( L_(p,q)-space). Furthermore, using some classical theorems of w star-topology and concept of closed subspace -complemented, for every almost surjective epsilon-isometry mapping  <em>f </em>: <em>X to</em><em> Y</em>, where <em>Y</em> is a reflexive Banach space, then there exists a bounded linear operator   <em>T</em> : <em>Y to</em><em> X</em>  with  such that</p><p class="AbstractCxSpMiddle">  </p><p class="AbstractCxSpLast">for every x in X.</p>


2014 ◽  
Vol 30 (1) ◽  
pp. 31-37
Author(s):  
H. A. ATIA ◽  
◽  

Our goal in this work is to study the separation problem for the Grushin differential operator formed by ... in the Banach space H1(R2), where the potential Q(x, y) ∈ L(1), is a bounded linear operator which transforms at 1 in value of (x, y).


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Danyal Soybaş

A Banach space is said to have (D) property if every bounded linear operator is weakly compact for every Banach space whose dual does not contain an isomorphic copy of . Studying this property in connection with other geometric properties, we show that every Banach space whose dual has (V∗) property of Pełczyński (and hence every Banach space with (V) property) has (D) property. We show that the space of real functions, which are integrable with respect to a measure with values in a Banach space , has (D) property. We give some other results concerning Banach spaces with (D) property.


1992 ◽  
Vol 120 (3-4) ◽  
pp. 283-296 ◽  
Author(s):  
Stephen Montgomery-Smith ◽  
Paulette Saab

SynopsisLet X, Y and Z be Banach spaces, and let Πp (Y, Z) (1 ≦ p < ∞) denote the space of p-summing operators from Y to Z. We show that, if X is a ℒ∞-space, then a bounded linear operator is 1-summing if and only if a naturally associated operator T#: X → Πl (Y, Z) is 1-summing. This result need not be true if X is not a ℒ∞-space. For p > 1, several examples are given with X = C[0, 1] to show that T# can be p-summing without T being p-summing. Indeed, there is an operator T on whose associated operator T# is 2-summing, but for all N ∈ N, there exists an N-dimensional subspace U of such that T restricted to U is equivalent to the identity operator on . Finally, we show that there is a compact Hausdorff space K and a bounded linear operator for which T#: C(K) → Π1 (l1, l2) is not 2-summing.


2004 ◽  
Vol 76 (2) ◽  
pp. 281-290 ◽  
Author(s):  
Guoliang Chen ◽  
Yimin Wei ◽  
Yifeng Xue

AbstractFor any bounded linear operator A in a Banach space, two generalized condition numbers, k(A) and k(A) are defined in this paper. These condition numbers may be applied to the perturbation analysis for the solution of ill-posed differential equations and bounded linear operator equations in infinite dimensional Banach spaces. Different expressions for the two generalized condition numbers are discussed in this paper and applied to the perturbation analysis of the operator equation.


Sign in / Sign up

Export Citation Format

Share Document