Four (2+1)-dimensional integrable extensions of the KdV equation: Multiple-soliton and multiple singular soliton solutions

2009 ◽  
Vol 215 (4) ◽  
pp. 1463-1476 ◽  
Author(s):  
Abdul-Majid Wazwaz
Open Physics ◽  
2011 ◽  
Vol 9 (3) ◽  
Author(s):  
Abdul-Majid Wazwaz

AbstractThe integrability of coupled KdV equations is examined. The simplified form of Hirota’s bilinear method is used to achieve this goal. Multiple-soliton solutions and multiple singular soliton solutions are formally derived for each coupled KdV equation. The resonance phenomenon of each model will be examined.


Open Physics ◽  
2011 ◽  
Vol 9 (1) ◽  
Author(s):  
Abdul-Majid Wazwaz

AbstractIn this work, two new completely integrable extensions of the Kadomtsev-Petviashvili (eKP) equation are developed. Multiple soliton solutions and multiple singular soliton solutions are derived to demonstrate the compatibility of the extensions of the KP equation.


2011 ◽  
Vol 66 (10-11) ◽  
pp. 625-631
Author(s):  
Abdul-Majid Wazwaz

We make use of Hirota’s bilinear method with computer symbolic computation to study a variety of coupled modified Korteweg-de Vries (mKdV) equations. Multiple soliton solutions and multiple singular soliton solutions are obtained for each coupled equation. The resonance phenomenon of each coupled mKdV equation is proved not to exist.


1993 ◽  
Vol 20 (4) ◽  
pp. 493-493
Author(s):  
Zong-Yun Chen ◽  
Nian-Ning Huang

2009 ◽  
Vol 87 (12) ◽  
pp. 1227-1232 ◽  
Author(s):  
Abdul-Majid Wazwaz

In this work we study two systems of coupled KdV and coupled KP equations. The Hirota bilinear method is applied to show that these two systems are completely integrable. Multiple-soliton solutions and multiple singular-soliton solutions are derived for each system. The resonance phenomenon is examined as well.


2010 ◽  
Vol 19 (01) ◽  
pp. 145-151 ◽  
Author(s):  
ABDUL-MAJID WAZWAZ

In this work, we study a system of coupled modified KdV (mKdV) equations. Multiple soliton solutions and multiple singular soliton solutions are derived by using the Hirota's bilinear method and the Hietarinta approach. The resonance phenomenon is examined.


Sign in / Sign up

Export Citation Format

Share Document