hirota’s bilinear method
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 0)

Author(s):  
S. Şule Şener Kiliç

In this paper, we study the generalized ([Formula: see text])-dimensional Hietarinta equation which is investigated by utilizing Hirota’s bilinear method. Also, the bilinear form is obtained, and the N-soliton solutions are constructed. In addition, multi-wave and breather wave solutions of the addressed equation with specific coefficients are presented. Finally, under certain conditions, the asymptotic behavior of solutions is analyzed in both methods. Moreover, we employ the linear superposition principle to determine [Formula: see text]-soliton wave solutions for the generalized ([Formula: see text])-dimensional Hietarinta equation.


Author(s):  
Muhammad Bilal ◽  
Shafqat Ur-Rehman ◽  
Jamshad Ahmad

In this study, we successfully apply Hirota’s bilinear method (HBM) to retrieve the different wave structures of the general [Formula: see text]th dispersionless Dym equation by considering the test function approaches. The studied model is used to describe the dynamics of deep water waves. We formally retrieve some novel lump periodic, some other new interaction, and breather wave solutions. Moreover, the physical behavior of the reported results is sketched through several three-dimensional, two-dimensional and contour profiles with the assistance of suitable parameters. The acquired results are valuable in grasping the elementary scenarios of nonlinear fluid dynamics as well as the dynamics of engineering sciences in the related nonlinear higher-dimensional wave fields. The gained results are checked and found correct by putting them into the governing equation with the aid of Mathematica. Thus, our strategies through the fortress of representative calculations give a functioning and intense mathematical execution for tackling complicated nonlinear wave issues.


Author(s):  
Ruyun Ma ◽  
Yujuan Zhang ◽  
Na Xiong ◽  
Bao-Feng Feng

Abstract In this paper, we are concerned with one of the generalized short wave equations proposed by Hone et al. (Lett. Math. Phys 108 927 (2018)). We show that the derivative form of this equation can be viewed as a short wave limit of the Novikov (sw-Novikov) equation. Furthermore, this generalized short wave equation and its derivative form are found to be connected to period 3 reduction of two-dimensional CKP(BKP)-Toda hierarchy, same as the short wave limit of the Depasperis-Procesi (sw-DP) equation. We propose a two-component short wave equation which contain the sw-Novikov equation and sw-DP equation as two special cases. As a main result, we construct two types of integrable semi-discretizations via Hirota’s bilinear method and provide multi-soliton solution to the semi-discrete sw-Novikov equation.


2021 ◽  
pp. 2150408
Author(s):  
Wang Gang ◽  
Jalil Manafian ◽  
Fatma Berna Benli ◽  
Onur Alp İlhan ◽  
Reza Goldaran

An integrable of the generalized Calogero-Bogoyavlenskii-Schiff-Bogoyavlensky-Konopelchenko (CBS-BK) equation is studied, by employing Hirota’s bilinear method the bilinear form is obtained, and the multiple-soliton solutions are constructed. The modified of improved bilinear method has been utilized to investigate multiple solutions. In addition, some graphs including 3D, contour, density, and [Formula: see text]-curves plots of the addressed equation with specific coefficients are shown. Finally, under certain conditions, the asymptotic behavior of the linearization solution is analyzed to prove that the modulation instability is stable for some points.


2021 ◽  
Author(s):  
Zhao Zhang ◽  
Biao Li ◽  
Junchao Chen ◽  
QI GUO

Abstract Based on the Hirota's bilinear method, a more classic limit technique is perfected to obtain second-order smooth positons. Immediately afterwards, we propose an extremely ingenious limit approach in which higher-order smooth positons and breather positons can be quickly derived from N-soliton solution. Under this ingenious technique, the smooth positons and breather positons of the modified Korteweg-de Vries system are quickly and easily derived. Compared with the generalized Darboux transformation, the approach mentioned in this paper has the following advantages and disadvantages: the advantage is that it is simple and fast; the disadvantage is that this method cannot get a concise general mathematical expression of nth-order smooth positons.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Changhao Zhang ◽  
Guiying Chen

A general coupled KdV equation, which describes the interactions of two long waves with different dispersion relation, is considered. By employing the Hirota’s bilinear method, the bilinear form is obtained, and the one-soliton solution and two-soliton solution are constructed. Moreover, the elasticity of the collision between two solitons is proved by analyzing the asymptotic behavior of the two-soliton solution. Some figures are displayed to illustrate the process of elastic collision.


Author(s):  
Supratim Das

We apply Ablowitz-Kaup-Newel-Segur hierarchy to derive the generalized shallow waterwave equation and we also investigate N-soliton solutions of the derived equation using InverseScattering Transform method and Hirota’s bilinear method.


2018 ◽  
Vol 32 (15) ◽  
pp. 1850161 ◽  
Author(s):  
Yaqing Liu ◽  
Xiaoyong Wen

In this paper, a generalized (3[Formula: see text]+[Formula: see text]1)-dimensional B-type Kadomtsev–Petviashvili (gBKP) equation is investigated by using the Hirota’s bilinear method. With the aid of symbolic computation, some new lump, mixed lump kink and periodic lump solutions are derived. Based on the derived solutions, some novel interaction phenomena like the fission and fusion interactions between one lump soliton and one kink soliton, the fission and fusion interactions between one lump soliton and a pair of kink solitons and the interactions between two periodic lump solitons are discussed graphically. Results might be helpful for understanding the propagation of the shallow water wave.


2018 ◽  
Vol 32 (07) ◽  
pp. 1850104 ◽  
Author(s):  
Li Zou ◽  
Zong-Bing Yu ◽  
Shou-Fu Tian ◽  
Lian-Li Feng ◽  
Jin Li

In this paper, we consider the (2+1)-dimensional Ito equation, which was introduced by Ito. By considering the Hirota’s bilinear method, and using the positive quadratic function, we obtain some lump solutions of the Ito equation. In order to ensure rational localization and analyticity of these lump solutions, some sufficient and necessary conditions are provided on the parameters that appeared in the solutions. Furthermore, the interaction solutions between lump solutions and the stripe solitons are discussed by combining positive quadratic function with exponential function. Finally, the dynamic properties of these solutions are shown via the way of graphical analysis by selecting appropriate values of the parameters.


Sign in / Sign up

Export Citation Format

Share Document