Effect of viscous dissipation on natural convection heat and mass transfer from vertical cone in a non-Newtonian fluid saturated non-Darcy porous medium

2011 ◽  
Vol 217 (20) ◽  
pp. 8100-8114 ◽  
Author(s):  
R.R. Kairi ◽  
P.V.S.N. Murthy
2018 ◽  
Vol 7 (1) ◽  
pp. 65-72
Author(s):  
Rishi Raj Kairi ◽  
Ch. RamReddy ◽  
Santanu Raut

Abstract This paper emphasizes the thermo-diffusion and viscous dissipation effects on double diffusive natural convection heat and mass transfer characteristics of non-Newtonian power-law fluid over a vertical cone embedded in a non-Darcy porous medium with variable heat and mass flux conditions. The Ostwald–de Waele power-law model is employed to describe the behavior of non-Newtonian fluid. Local non-similarity procedure is applied to transform the set of non-dimensional partial differential equations into set of ordinary differential equations and then the resulting system of equations are solved numerically by Runge-Kutta fourth order method together with a shooting technique. The influence of pertinent parameters on temperature and concentration, heat and mass transfer rates are analyzed in opposing and aiding buoyancy cases through graphical representation and explored in detail.


2011 ◽  
Vol 15 (suppl. 2) ◽  
pp. 307-316 ◽  
Author(s):  
Rishi Kairi

This paper investigates the influence of double dispersion and viscosity on natural convection heat and mass transfer from vertical cone in a non-Darcy porous medium saturated with non- Newtonian fluid. The surface of the cone and the ambient medium are maintained at constant but different levels of temperature and concentration. The Ostwald-de Waele power law model is used to characterize the non-Newtonian fluid behavior. A similarity solution for the transformed governing equations is obtained. The numerical computation is carried out for various values of the non-dimensional physical parameters. The effect of non-Darcy parameter, viscosity parameter, thermal and solutal dispersion, buoyancy ratio, Lewis number and power-law index parameter on the temperature and concentration field as well as on the heat and mass transfer coefficients is analyzed.


Sign in / Sign up

Export Citation Format

Share Document