Painlevé property, auto-Bäcklund transformation and analytic solutions of a variable-coefficient modified Korteweg–de Vries model in a hot magnetized dusty plasma with charge fluctuations

2011 ◽  
Vol 218 (2) ◽  
pp. 271-279 ◽  
Author(s):  
Xiao-Ling Gai ◽  
Yi-Tian Gao ◽  
Xin Yu ◽  
Lei Wang
2008 ◽  
Vol 19 (11) ◽  
pp. 1659-1671 ◽  
Author(s):  
FU-WEI SUN ◽  
YI-TIAN GAO ◽  
CHUN-YI ZHANG ◽  
XIAO-GE XU

We investigate a generalized variable-coefficient modified Korteweg–de Vries model with perturbed factor and external force (vc-GmKdV) describing fluid dynamics and space plasmas. In this paper, we propose an extended variable-coefficient balancing-act method (Evc-BAM), which is concise and straightforward, to obtain the generalized analytic solutions including solitary wave solution of the vc-GmKdV model with symbolic computation. Meanwhile, using the Evc-BAM, we obtain an auto-Bäcklund transformation for the vc-GmKdV model on the relevant constraint conditions of the coefficient functions. Using the given auto-Bäcklund transformation, the solutions of special equations for the vc-GmKdV model are also obtained as the variable-coefficient Korteweg–de Vries (vc-KdV) equation, the generalized KdV equation with perturbed factor and external force (GKdV), the variable-coefficient modified Korteweg–de Vries (vc-mKdV) equation, and the variable-coefficient cylindrical modified Korteweg–de Vries (vc-cmKdV) equation, respectively.


2020 ◽  
Vol 34 (25) ◽  
pp. 2050226 ◽  
Author(s):  
Yu-Qi Chen ◽  
Bo Tian ◽  
Qi-Xing Qu ◽  
He Li ◽  
Xue-Hui Zhao ◽  
...  

For a variable-coefficient Korteweg–de Vries equation in a lake/sea, two-layer liquid, atmospheric flow, cylindrical plasma or interactionless plasma, in this paper, we derive the bilinear Bäcklund transformation, non-isospectral Ablowitz–Kaup–Newell–Segur system and infinite conservation laws for the wave amplitude under certain constraints among the external force, dissipation, nonlinearity, dispersion and perturbation.


2010 ◽  
Vol 24 (10) ◽  
pp. 1023-1032 ◽  
Author(s):  
XIAO-GE XU ◽  
XIANG-HUA MENG ◽  
FU-WEI SUN ◽  
YI-TIAN GAO

Applicable in fluid dynamics and plasmas, a generalized variable-coefficient Korteweg–de Vries (vcKdV) equation is investigated analytically employing the Hirota bilinear method in this paper. The bilinear form for such a model is derived through a dependent variable transformation. Based on the bilinear form, the integrable properties such as the N-solitonic solution, the Bäcklund transformation and the Lax pair for the vcKdV equation are obtained. Additionally, it is shown that the bilinear Bäcklund transformation can turn into the one denoted in the original variables.


2011 ◽  
Vol 25 (05) ◽  
pp. 723-733 ◽  
Author(s):  
QIAN FENG ◽  
YI-TIAN GAO ◽  
XIANG-HUA MENG ◽  
XIN YU ◽  
ZHI-YUAN SUN ◽  
...  

A non-isospectral and variable-coefficient modified Korteweg–de Vries (mKdV) equation is investigated in this paper. Starting from the Ablowitz–Kaup–Newell–Segur procedure, the Lax pair is established and the Bäcklund transformation in original variables is also derived. By a dependent variable transformation, the non-isospectral and variable-coefficient mKdV equation is transformed into bilinear equations, by virtue of which the N-soliton-like solution is obtained. In addition, the bilinear Bäcklund transformation gives a one-soliton-like solution from a vacuum one. Furthermore, the N-soliton-like solution in the Wronskian form is constructed and verified via the Wronskian technique.


Sign in / Sign up

Export Citation Format

Share Document