Existence results for dynamic Sturm–Liouville boundary value problems via variational methods

2020 ◽  
pp. 125614
Author(s):  
David Barilla ◽  
Martin Bohner ◽  
Shapour Heidarkhani ◽  
Shahin Moradi
Author(s):  
Shapour Heidarkhani ◽  
Ghasem A. Afrouzi ◽  
Shahin Moradi

In this paper, we consider the existence of one solution and three solutions for the boundary value system with Sturm–Liouville boundary conditions [Formula: see text] for [Formula: see text]. Our technical approach is based on variational methods. In addition, examples are provided to illustrate our results.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yaning Li ◽  
Quanguo Zhang ◽  
Baoyan Sun

In this paper, we deal with two fractional boundary value problems which have linear growth and quadratic growth about the fractional derivative in the nonlinearity term. By using variational methods coupled with the iterative methods, we obtain the existence results of solutions. To the best of the authors’ knowledge, there are no results on the solutions to the fractional boundary problem which have quadratic growth about the fractional derivative in the nonlinearity term.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Yu Tian ◽  
Dongpo Sun

The Sturm-Liouville boundary-value problem for fourth-order impulsive differential equations is studied. The existence results for one solution and multiple solutions are obtained. The main ideas involve variational methods and three critical points theory.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Imran Talib ◽  
Thabet Abdeljawad

Abstract Our main concern in this article is to investigate the existence of solution for the boundary-value problem $$\begin{aligned}& (\phi \bigl(x'(t)\bigr)'=g_{1} \bigl(t,x(t),x'(t)\bigr),\quad \forall t\in [0,1], \\& \Upsilon _{1}\bigl(x(0),x(1),x'(0)\bigr)=0, \\& \Upsilon _{2}\bigl(x(0),x(1),x'(1)\bigr)=0, \end{aligned}$$ ( ϕ ( x ′ ( t ) ) ′ = g 1 ( t , x ( t ) , x ′ ( t ) ) , ∀ t ∈ [ 0 , 1 ] , ϒ 1 ( x ( 0 ) , x ( 1 ) , x ′ ( 0 ) ) = 0 , ϒ 2 ( x ( 0 ) , x ( 1 ) , x ′ ( 1 ) ) = 0 , where $g_{1}:[0,1]\times \mathbb{R}^{2}\rightarrow \mathbb{R}$ g 1 : [ 0 , 1 ] × R 2 → R is an $L^{1}$ L 1 -Carathéodory function, $\Upsilon _{i}:\mathbb{R}^{3}\rightarrow \mathbb{R} $ ϒ i : R 3 → R are continuous functions, $i=1,2$ i = 1 , 2 , and $\phi :(-a,a)\rightarrow \mathbb{R}$ ϕ : ( − a , a ) → R is an increasing homeomorphism such that $\phi (0)=0$ ϕ ( 0 ) = 0 , for $0< a< \infty $ 0 < a < ∞ . We obtain the solvability results by imposing some new conditions on the boundary functions. The new conditions allow us to ensure the existence of at least one solution in the sector defined by well ordered functions. These ordered functions do not require one to check the definitions of lower and upper solutions. Moreover, the monotonicity assumptions on the arguments of boundary functions are not required in our case. An application is considered to ensure the applicability of our results.


2001 ◽  
Vol 25 (11) ◽  
pp. 709-715 ◽  
Author(s):  
Antonio G. García ◽  
Miguel A. Hernández-Medina ◽  
María J. Muñoz-Bouzo

The classical Kramer sampling theorem is, in the subject of self-adjoint boundary value problems, one of the richest sources to obtain sampling expansions. It has become very fruitful in connection with discrete Sturm-Liouville problems. In this paper a discrete version of the analytic Kramer sampling theorem is proved. Orthogonal polynomials arising from indeterminate Hamburger moment problems as well as polynomials of the second kind associated with them provide examples of Kramer analytic kernels.


Sign in / Sign up

Export Citation Format

Share Document