boundary functions
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 18)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Т. В. Денисова ◽  
А. П. Рыбалко

The non-classical boundary problem of the mathematical physics for the two-dimensional Poisson equation is considered. As the area, in which the solution is sought, the area, made up of different circular segments, folded into a multi-sheet plate of a book structure, is taken. All sheets are different from each other, both in their physical properties and in geometric dimensions, and are interconnected by a chord common to all sheets. The problem statement is given and its exact solution is obtained.The solution to the problem is considered in bipolar coordinate systems, each of which is associated with one of the segments. In this case, all coordinate systems have a common parameter - the length of the rectilinear segment boundary. As a method for solving the problem, the classical method of separation of variables is used – the Fourier method. Although the Dirichlet problem is considered as a basic one, however, the proposed method can be applied in the case when conditions of other types are given on the arcs of separate circles: Neumann or the third main problem.The statement of the considered problem differs from the classical one in that the conjugation conditions of fields on the line of connection of segments are added to the traditional boundary conditions. These conditions represent the equality of the values of the functions and the equality to zero of the sum of linear combinations of their normal derivatives. The solution is constructed (selected) in such a way that the first of the field conjugation conditions is fulfilled automatically for any choice of unknown functions. The boundary conditions on the segments and the second conjugation condition make it possible to determine all the unknown functions of the problem. To apply the Fourier method, it is necessary that all boundary functions are equal to zero at the corner points of the segments. If this condition is violated, a modification of the method that allows one to obtain an exact solution in this case is proposed. As an application, such problems are considered: a) on the torsion of a composite rod, the cross-section of which is two different segments; b) the stationary heat conductivity problem for two glued half-segment with sources of heat inside the area. Exact analytical solutions to these new problems have been obtained.


Author(s):  
Vasily I. Punegov ◽  
Andrey V. Karpov

Using the formalism of dynamical scattering of spatially restricted X-ray fields, the diffraction of a microbeam in a crystal with boundary functions for the incident and reflected amplitudes was studied in the case of geometrical optics and the Fresnel approximation (FA). It is shown that, for a wide front of the X-ray field, the angular distributions of the scattered intensity in the geometrical optics approximation (GOA) and the FA are approximately the same. On the other hand, it is established that, for a narrow exit slit in the diffraction scheme, it is always necessary to take into account the X-ray diffraction at the slit edges. Reciprocal-space maps and the distribution of the diffraction intensity of the microbeam inside the crystal were calculated.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Imran Talib ◽  
Thabet Abdeljawad

Abstract Our main concern in this article is to investigate the existence of solution for the boundary-value problem $$\begin{aligned}& (\phi \bigl(x'(t)\bigr)'=g_{1} \bigl(t,x(t),x'(t)\bigr),\quad \forall t\in [0,1], \\& \Upsilon _{1}\bigl(x(0),x(1),x'(0)\bigr)=0, \\& \Upsilon _{2}\bigl(x(0),x(1),x'(1)\bigr)=0, \end{aligned}$$ ( ϕ ( x ′ ( t ) ) ′ = g 1 ( t , x ( t ) , x ′ ( t ) ) , ∀ t ∈ [ 0 , 1 ] , ϒ 1 ( x ( 0 ) , x ( 1 ) , x ′ ( 0 ) ) = 0 , ϒ 2 ( x ( 0 ) , x ( 1 ) , x ′ ( 1 ) ) = 0 , where $g_{1}:[0,1]\times \mathbb{R}^{2}\rightarrow \mathbb{R}$ g 1 : [ 0 , 1 ] × R 2 → R is an $L^{1}$ L 1 -Carathéodory function, $\Upsilon _{i}:\mathbb{R}^{3}\rightarrow \mathbb{R} $ ϒ i : R 3 → R are continuous functions, $i=1,2$ i = 1 , 2 , and $\phi :(-a,a)\rightarrow \mathbb{R}$ ϕ : ( − a , a ) → R is an increasing homeomorphism such that $\phi (0)=0$ ϕ ( 0 ) = 0 , for $0< a< \infty $ 0 < a < ∞ . We obtain the solvability results by imposing some new conditions on the boundary functions. The new conditions allow us to ensure the existence of at least one solution in the sector defined by well ordered functions. These ordered functions do not require one to check the definitions of lower and upper solutions. Moreover, the monotonicity assumptions on the arguments of boundary functions are not required in our case. An application is considered to ensure the applicability of our results.


2020 ◽  
Vol 28 (3) ◽  
pp. 367-378 ◽  
Author(s):  
Chein-Shan Liu ◽  
Botong Li

AbstractIn this paper we estimate an unknown space-time dependent force being exerted on the vibrating Euler–Bernoulli beam under different boundary supports, which is obtained with the help of measured boundary forces as additional conditions. A sequence of spatial boundary functions is derived, and all the boundary functions and the zero element constitute a linear space. A work boundary functional is coined in the linear space, of which the work is approximately preserved for each work boundary function. The linear system used to recover the unknown force with the work boundary functions as the bases is derived and the iterative algorithm is developed, which converges very fast at each time step. The accuracy and robustness of the boundary functional method (BFM) are confirmed by comparing the estimated forces under large noise with the exact forces. We also recover the unknown force on the damped vibrating Euler–Bernoulli beam equation.


Sign in / Sign up

Export Citation Format

Share Document