Operational calculus for Caputo fractional calculus with respect to functions and the associated fractional differential equations

2021 ◽  
Vol 409 ◽  
pp. 126400
Author(s):  
Hafiz Muhammad Fahad ◽  
Arran Fernandez
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Tariq A. Aljaaidi ◽  
Deepak B. Pachpatte ◽  
Thabet Abdeljawad ◽  
Mohammed S. Abdo ◽  
Mohammed A. Almalahi ◽  
...  

AbstractThe theory of fractional integral inequalities plays an intrinsic role in approximation theory also it has been a key in establishing the uniqueness of solutions for some fractional differential equations. Fractional calculus has been found to be the best for modeling physical and engineering processes. More precisely, the proportional fractional operators are one of the recent important notions of fractional calculus. Our aim in this research paper is developing some novel ways of fractional integral Hermite–Hadamard inequalities in the frame of a proportional fractional integral with respect to another strictly increasing continuous function. The considered fractional integral is applied to establish some new fractional integral Hermite–Hadamard-type inequalities. Moreover, we present some special cases throughout discussing this work.


2021 ◽  
Vol 5 (2) ◽  
pp. 43
Author(s):  
Gerd Baumann

We shall discuss three methods of inverse Laplace transforms. A Sinc-Thiele approximation, a pure Sinc, and a Sinc-Gaussian based method. The two last Sinc related methods are exact methods of inverse Laplace transforms which allow us a numerical approximation using Sinc methods. The inverse Laplace transform converges exponentially and does not use Bromwich contours for computations. We apply the three methods to Mittag-Leffler functions incorporating one, two, and three parameters. The three parameter Mittag-Leffler function represents Prabhakar’s function. The exact Sinc methods are used to solve fractional differential equations of constant and variable differentiation order.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2132
Author(s):  
Yuri Luchko

In this paper, we first discuss the convolution series that are generated by Sonine kernels from a class of functions continuous on a real positive semi-axis that have an integrable singularity of power function type at point zero. These convolution series are closely related to the general fractional integrals and derivatives with Sonine kernels and represent a new class of special functions of fractional calculus. The Mittag-Leffler functions as solutions to the fractional differential equations with the fractional derivatives of both Riemann-Liouville and Caputo types are particular cases of the convolution series generated by the Sonine kernel κ(t)=tα−1/Γ(α),0<α<1. The main result of the paper is the derivation of analytic solutions to the single- and multi-term fractional differential equations with the general fractional derivatives of the Riemann-Liouville type that have not yet been studied in the fractional calculus literature.


2008 ◽  
Vol 05 (06) ◽  
pp. 863-892 ◽  
Author(s):  
RAMI AHMAD EL-NABULSI

Fractional calculus has recently attracted considerable attention. In particular, various fractional differential equations are used to model nonlinear wave theory that arises in many different areas of physics such as Josephson junction theory, field theory, theory of lattices, etc. Thus one may expect fractional calculus, in particular fractional differential equations, plays an important role in quantum field theories which are expected to satisfy fractional generalization of Klein–Gordon and Dirac equations. Until now, in high-energy physics and quantum field theories the derivative operator has only been used in integer steps. In this paper, we want to extend the idea of differentiation to arbitrary non-integers steps. We will address multi-dimensional fractional action-like problems of the calculus of variations where fractional field theories and fractional differential Dirac operators are constructed.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 324 ◽  
Author(s):  
Kai Diethelm ◽  
Roberto Garrappa ◽  
Martin Stynes

The solution of fractional-order differential problems requires in the majority of cases the use of some computational approach. In general, the numerical treatment of fractional differential equations is much more difficult than in the integer-order case, and very often non-specialist researchers are unaware of the specific difficulties. As a consequence, numerical methods are often applied in an incorrect way or unreliable methods are devised and proposed in the literature. In this paper we try to identify some common pitfalls in the use of numerical methods in fractional calculus, to explain their nature and to list some good practices that should be followed in order to obtain correct results.


Sign in / Sign up

Export Citation Format

Share Document