FRACTIONAL FIELD THEORIES FROM MULTI-DIMENSIONAL FRACTIONAL VARIATIONAL PROBLEMS

2008 ◽  
Vol 05 (06) ◽  
pp. 863-892 ◽  
Author(s):  
RAMI AHMAD EL-NABULSI

Fractional calculus has recently attracted considerable attention. In particular, various fractional differential equations are used to model nonlinear wave theory that arises in many different areas of physics such as Josephson junction theory, field theory, theory of lattices, etc. Thus one may expect fractional calculus, in particular fractional differential equations, plays an important role in quantum field theories which are expected to satisfy fractional generalization of Klein–Gordon and Dirac equations. Until now, in high-energy physics and quantum field theories the derivative operator has only been used in integer steps. In this paper, we want to extend the idea of differentiation to arbitrary non-integers steps. We will address multi-dimensional fractional action-like problems of the calculus of variations where fractional field theories and fractional differential Dirac operators are constructed.

Author(s):  
W. J. Torres Bobadilla ◽  
G. F. R. Sborlini ◽  
P. Banerjee ◽  
S. Catani ◽  
A. L. Cherchiglia ◽  
...  

AbstractIn this manuscript, we report the outcome of the topical workshop: paving the way to alternative NNLO strategies (https://indico.ific.uv.es/e/WorkStop-ThinkStart_3.0), by presenting a discussion about different frameworks to perform precise higher-order computations for high-energy physics. These approaches implement novel strategies to deal with infrared and ultraviolet singularities in quantum field theories. A special emphasis is devoted to the local cancellation of these singularities, which can enhance the efficiency of computations and lead to discover novel mathematical properties in quantum field theories.


1985 ◽  
Vol 40 (7) ◽  
pp. 752-773
Author(s):  
H. Stumpf

Unified nonlinear spinorfield models are self-regularizing quantum field theories in which all observable (elementary and non-elementary) particles are assumed to be bound states of fermionic preon fields. Due to their large masses the preons themselves are confined and below the threshold of preon production the effective dynamics of the model is only concerned with bound state reactions. In preceding papers a functional energy representation, the statistical interpretation and the dynamical equations were derived and the effective dynamics for preon-antipreon boson states and three preon-fermion states (with corresponding anti-fermions) was studied in the low energy limit. The transformation of the functional energy representation of the spinorfield into composite particle functional operators produced a hierarchy of effective interactions at the composite particle level, the leading terms of which are identical with the functional energy representation of a phenomenological boson-fermion coupling theory. In this paper these calculations are extended into the high energy range. This leads to formfactors for the composite particle interaction terms which are calculated in a rough approximation and which in principle are observable. In addition, the mathematical and physical interpretation of nonlocal quantum field theories and the meaning of the mapping procedure, its relativistic invariance etc. are discussed.


2008 ◽  
Vol 17 (03n04) ◽  
pp. 551-555 ◽  
Author(s):  
E. I. GUENDELMAN

It is argued that high energy density excitations, responsible for UV divergences in quantum field theories, including quantum gravity, are likely to be the source of child universes which carry them out of the original space–time. This decoupling prevents the high UV excitations from having any influence on physical amplitudes. Child universe production could therefore be responsible for UV regularization in quantum field theories which take into account gravitational effects. Finally, we discuss child universe production in the last stages of black hole evaporation, the prediction of the absence of trans-Planckian primordial perturbations, the connection with the minimum length hypothesis, and in particular the connection with the maximal curvature hypothesis.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Tariq A. Aljaaidi ◽  
Deepak B. Pachpatte ◽  
Thabet Abdeljawad ◽  
Mohammed S. Abdo ◽  
Mohammed A. Almalahi ◽  
...  

AbstractThe theory of fractional integral inequalities plays an intrinsic role in approximation theory also it has been a key in establishing the uniqueness of solutions for some fractional differential equations. Fractional calculus has been found to be the best for modeling physical and engineering processes. More precisely, the proportional fractional operators are one of the recent important notions of fractional calculus. Our aim in this research paper is developing some novel ways of fractional integral Hermite–Hadamard inequalities in the frame of a proportional fractional integral with respect to another strictly increasing continuous function. The considered fractional integral is applied to establish some new fractional integral Hermite–Hadamard-type inequalities. Moreover, we present some special cases throughout discussing this work.


Sign in / Sign up

Export Citation Format

Share Document