FRACTIONAL FIELD THEORIES FROM MULTI-DIMENSIONAL FRACTIONAL VARIATIONAL PROBLEMS
Fractional calculus has recently attracted considerable attention. In particular, various fractional differential equations are used to model nonlinear wave theory that arises in many different areas of physics such as Josephson junction theory, field theory, theory of lattices, etc. Thus one may expect fractional calculus, in particular fractional differential equations, plays an important role in quantum field theories which are expected to satisfy fractional generalization of Klein–Gordon and Dirac equations. Until now, in high-energy physics and quantum field theories the derivative operator has only been used in integer steps. In this paper, we want to extend the idea of differentiation to arbitrary non-integers steps. We will address multi-dimensional fractional action-like problems of the calculus of variations where fractional field theories and fractional differential Dirac operators are constructed.