scholarly journals Sensitivity analysis for generalized strongly monotone variational inclusions based on the (A,η)-resolvent operator technique

2006 ◽  
Vol 19 (12) ◽  
pp. 1409-1413 ◽  
Author(s):  
R.U. Verma

2018 ◽  
Vol 51 (1) ◽  
pp. 241-254
Author(s):  
Jong Kyu Kim ◽  
Muhammad Iqbal Bhat

AbstractIn this paper, we introduce and study a new system of variational inclusions which is called a system of nonlinear implicit variational inclusion problems with A-monotone and H-monotone operators in semi-inner product spaces. We define the resolvent operator associated with A-monotone and H-monotone operators and prove its Lipschitz continuity. Using resolvent operator technique, we prove the existence and uniqueness of solution for this new system of variational inclusions. Moreover, we suggest an iterative algorithm for approximating the solution of this system and discuss the convergence analysis of the sequences generated by the iterative algorithm under some suitable conditions.



2004 ◽  
Vol 2004 (20) ◽  
pp. 1035-1045 ◽  
Author(s):  
A. H. Siddiqi ◽  
Rais Ahmad

We use Nadler's theorem and the resolvent operator technique form-accretive mappings to suggest an iterative algorithm for solving generalized nonlinear variational inclusions with relaxed strongly accretive mappings in Banach spaces. We prove the existence of solutions for our inclusions without compactness assumption and the convergence of the iterative sequences generated by the algorithm in real Banach spaces. Some special cases are also discussed.



2012 ◽  
Vol 2012 ◽  
pp. 1-15
Author(s):  
Prapairat Junlouchai ◽  
Somyot Plubtieng

We study a new system of nonlinear set-valued variational inclusions involving a finite family ofH(·,·)-accretive operators in Banach spaces. By using the resolvent operator technique associated with a finite family ofH(·,·)-accretive operators, we prove the existence of the solution for the system of nonlinear set-valued variational inclusions. Moreover, we introduce a new iterative scheme and prove a strong convergence theorem for finding solutions for this system.



2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
Sayyedeh Zahra Nazemi

We introduce a new class of generalized accretive mappings, named --accretive mappings, in Banach spaces. We define a resolvent operator associated with --accretive mappings and show its Lipschitz continuity. We also introduce and study a new system of generalized variational inclusions with --accretive mappings in Banach spaces. By using the resolvent operator technique associated with --accretive mappings, we construct a new iterative algorithm for solving this system of generalized variational inclusions in Banach spaces. We also prove the existence of solutions for the generalized variational inclusions and the convergence of iterative sequences generated by algorithm. Our results improve and generalize many known corresponding results.





2002 ◽  
Vol 30 (10) ◽  
pp. 593-604 ◽  
Author(s):  
Zeqing Liu ◽  
Lokenath Debnath ◽  
Shin Min Kang ◽  
Jeong Sheok Ume

We introduce and study a new class of completely generalized multivalued nonlinear quasi-variational inclusions. Using the resolvent operator technique for maximal monotone mappings, we suggest two kinds of iterative algorithms for solving the completely generalized multivalued nonlinear quasi-variational inclusions. We establish both four existence theorems of solutions for the class of completely generalized multivalued nonlinear quasi-variational inclusions involving strongly monotone, relaxed Lipschitz, and generalized pseudocontractive mappings, and obtain a few convergence results of iterative sequences generated by the algorithms. The results presented in this paper extend, improve, and unify a lot of results due to Adly, Huang, Jou-Yao, Kazmi, Noor, Noor-Al-Said, Noor-Noor, Noor-Noor-Rassias, Shim-Kang-Huang-Cho, Siddiqi-Ansari, Verma, Yao, and Zhang.



2013 ◽  
Vol 710 ◽  
pp. 598-602
Author(s):  
Bao Di Fang

In this paper, we introduce and study a new class of completely generalized set-valued strongly nonlinear variational inclusions in Hilbert spaces and establish the equivalence between this variational inclusion and the fixed-point problem by using the resolvent operator technique for maximal monotone mapping. We construct a new three-step iterative algorithm and show the existence of solution for this variational inclusion and the convergence of the iterative method generated by the iterative method.



Sign in / Sign up

Export Citation Format

Share Document